IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0017401.html
   My bibliography  Save this article

An Administrative Claims Model for Profiling Hospital 30-Day Mortality Rates for Pneumonia Patients

Author

Listed:
  • Dale W Bratzler
  • Sharon-Lise T Normand
  • Yun Wang
  • Walter J O'Donnell
  • Mark Metersky
  • Lein F Han
  • Michael T Rapp
  • Harlan M Krumholz

Abstract

Background: Outcome measures for patients hospitalized with pneumonia may complement process measures in characterizing quality of care. We sought to develop and validate a hierarchical regression model using Medicare claims data that produces hospital-level, risk-standardized 30-day mortality rates useful for public reporting for patients hospitalized with pneumonia. Methodology/Principal Findings: Retrospective study of fee-for-service Medicare beneficiaries age 66 years and older with a principal discharge diagnosis of pneumonia. Candidate risk-adjustment variables included patient demographics, administrative diagnosis codes from the index hospitalization, and all inpatient and outpatient encounters from the year before admission. The model derivation cohort included 224,608 pneumonia cases admitted to 4,664 hospitals in 2000, and validation cohorts included cases from each of years 1998–2003. We compared model-derived state-level standardized mortality estimates with medical record-derived state-level standardized mortality estimates using data from the Medicare National Pneumonia Project on 50,858 patients hospitalized from 1998–2001. The final model included 31 variables and had an area under the Receiver Operating Characteristic curve of 0.72. In each administrative claims validation cohort, model fit was similar to the derivation cohort. The distribution of standardized mortality rates among hospitals ranged from 13.0% to 23.7%, with 25th, 50th, and 75th percentiles of 16.5%, 17.4%, and 18.3%, respectively. Comparing model-derived risk-standardized state mortality rates with medical record-derived estimates, the correlation coefficient was 0.86 (Standard Error = 0.032). Conclusions/Significance: An administrative claims-based model for profiling hospitals for pneumonia mortality performs consistently over several years and produces hospital estimates close to those using a medical record model.

Suggested Citation

  • Dale W Bratzler & Sharon-Lise T Normand & Yun Wang & Walter J O'Donnell & Mark Metersky & Lein F Han & Michael T Rapp & Harlan M Krumholz, 2011. "An Administrative Claims Model for Profiling Hospital 30-Day Mortality Rates for Pneumonia Patients," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-7, April.
  • Handle: RePEc:plo:pone00:0017401
    DOI: 10.1371/journal.pone.0017401
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017401
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0017401&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0017401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harvey Goldstein & David J. Spiegelhalter, 1996. "League Tables and Their Limitations: Statistical Issues in Comparisons of Institutional Performance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 385-409, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harlan M Krumholz & Angela Hsieh & Rachel P Dreyer & John Welsh & Nihar R Desai & Kumar Dharmarajan, 2016. "Trajectories of Risk for Specific Readmission Diagnoses after Hospitalization for Heart Failure, Acute Myocardial Infarction, or Pneumonia," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-14, October.
    2. Seidu Dauda & Abe C. Dunn & Anne E. Hall, 2019. "Are Medical Care Prices Still Declining? A Systematic Examination of Quality-Adjusted Price Index Alternatives for Medical Care," BEA Working Papers 0166, Bureau of Economic Analysis.
    3. Dauda, Seidu & Dunn, Abe & Hall, Anne, 2022. "A systematic examination of quality-adjusted price index alternatives for medical care using claims data," Journal of Health Economics, Elsevier, vol. 85(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    2. Bornmann, Lutz & Leydesdorff, Loet & Wang, Jian, 2014. "How to improve the prediction based on citation impact percentiles for years shortly after the publication date?," Journal of Informetrics, Elsevier, vol. 8(1), pages 175-180.
    3. Arpino, Bruno & Varriale, Roberta, 2009. "Assessing the quality of institutions’ rankings obtained through multilevel linear regression models," MPRA Paper 19873, University Library of Munich, Germany.
    4. Mutz, Rüdiger & Daniel, Hans-Dieter, 2018. "The bibliometric quotient (BQ), or how to measure a researcher’s performance capacity: A Bayesian Poisson Rasch model," Journal of Informetrics, Elsevier, vol. 12(4), pages 1282-1295.
    5. Magne Mogstad & Joseph P Romano & Azeem M Shaikh & Daniel Wilhelm, 2024. "Inference for Ranks with Applications to Mobility across Neighbourhoods and Academic Achievement across Countries," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 476-518.
    6. Daraio, Cinzia & Bonaccorsi, Andrea & Simar, Léopold, 2015. "Rankings and university performance: A conditional multidimensional approach," European Journal of Operational Research, Elsevier, vol. 244(3), pages 918-930.
    7. repec:lan:wpaper:991 is not listed on IDEAS
    8. Nils Gutacker & Andrew Street, 2015. "Multidimensional performance assessment using dominance criteria," Working Papers 115cherp, Centre for Health Economics, University of York.
    9. Nils Gutacker & Andrew Street, 2018. "Multidimensional performance assessment of public sector organisations using dominance criteria," Health Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 13-27, February.
    10. Sulis, Isabella & Giambona, Francesca & Porcu, Mariano, 2020. "Adjusted indicators of quality and equity for monitoring the education systems over time. Insights on EU15 countries from PISA surveys," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    11. Pia Kjær Kristensen & Raquel Perez-Vicente & George Leckie & Søren Paaske Johnsen & Juan Merlo, 2020. "Disentangling the contribution of hospitals and municipalities for understanding patient level differences in one-year mortality risk after hip-fracture: A cross-classified multilevel analysis in Swed," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-14, June.
    12. Paolo Berta & Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini, 2016. "Multilevel cluster-weighted models for the evaluation of hospitals," METRON, Springer;Sapienza Università di Roma, vol. 74(3), pages 275-292, December.
    13. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    14. Frank Eijkenaar & René C. J. A. van Vliet, 2014. "Performance Profiling in Primary Care," Medical Decision Making, , vol. 34(2), pages 192-205, February.
    15. John Robinson & Scott Zeger & Christopher Forrest, 2004. "A Hierarchical Multivariate Two-Part Model for Profiling Providers' Effects on Healthcare Charges," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1052, Berkeley Electronic Press.
    16. Martini, Gianmaria & Berta, Paolo & Mullahy, John & Vittadini, Giorgio, 2014. "The effectiveness–efficiency trade-off in health care: The case of hospitals in Lombardy, Italy," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 217-231.
    17. Anna Cuxart & Nicholas T. Longford, 1997. "Monitoring the university admissions process in Spain," Economics Working Papers 257, Department of Economics and Business, Universitat Pompeu Fabra, revised Dec 1997.
    18. Adnett, Nick & Bougheas, Spiros & Davies, Peter, 2002. "Market-based reforms of public schooling: some unpleasant dynamics," Economics of Education Review, Elsevier, vol. 21(4), pages 323-330, August.
    19. Francesca Giambona & Mariano Porcu & Isabella Sulis, 2017. "Students Mobility: Assessing the Determinants of Attractiveness Across Competing Territorial Areas," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(3), pages 1105-1132, September.
    20. Li Mingliang & Tobias Justin, 2005. "Bayesian Modeling of School Effects Using Hierarchical Models with Smoothing Priors," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(3), pages 1-33, September.
    21. Pier Ferrari & Laura Pagani & Carlo Fiorio, 2011. "A Two-Step Approach to Analyze Satisfaction Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 104(3), pages 545-554, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0017401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.