IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0017258.html
   My bibliography  Save this article

The Impact of Multifunctional Genes on "Guilt by Association" Analysis

Author

Listed:
  • Jesse Gillis
  • Paul Pavlidis

Abstract

Many previous studies have shown that by using variants of “guilt-by-association”, gene function predictions can be made with very high statistical confidence. In these studies, it is assumed that the “associations” in the data (e.g., protein interaction partners) of a gene are necessary in establishing “guilt”. In this paper we show that multifunctionality, rather than association, is a primary driver of gene function prediction. We first show that knowledge of the degree of multifunctionality alone can produce astonishingly strong performance when used as a predictor of gene function. We then demonstrate how multifunctionality is encoded in gene interaction data (such as protein interactions and coexpression networks) and how this can feed forward into gene function prediction algorithms. We find that high-quality gene function predictions can be made using data that possesses no information on which gene interacts with which. By examining a wide range of networks from mouse, human and yeast, as well as multiple prediction methods and evaluation metrics, we provide evidence that this problem is pervasive and does not reflect the failings of any particular algorithm or data type. We propose computational controls that can be used to provide more meaningful control when estimating gene function prediction performance. We suggest that this source of bias due to multifunctionality is important to control for, with widespread implications for the interpretation of genomics studies.

Suggested Citation

  • Jesse Gillis & Paul Pavlidis, 2011. "The Impact of Multifunctional Genes on "Guilt by Association" Analysis," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-16, February.
  • Handle: RePEc:plo:pone00:0017258
    DOI: 10.1371/journal.pone.0017258
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017258
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0017258&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0017258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Eisenberg & Edward M. Marcotte & Ioannis Xenarios & Todd O. Yeates, 2000. "Protein function in the post-genomic era," Nature, Nature, vol. 405(6788), pages 823-826, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raamesh Deshpande & Benjamin VanderSluis & Chad L Myers, 2013. "Comparison of Profile Similarity Measures for Genetic Interaction Networks," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-11, July.
    2. Aleksandar Stojmirović & Yi-Kuo Yu, 2014. "Building a Hierarchical Organization of Protein Complexes Out of Protein Association Data," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colizza, Vittoria & Flammini, Alessandro & Maritan, Amos & Vespignani, Alessandro, 2005. "Characterization and modeling of protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 1-27.
    2. Blasi, Monica Francesca & Casorelli, Ida & Colosimo, Alfredo & Blasi, Francesco Simone & Bignami, Margherita & Giuliani, Alessandro, 2005. "A recursive network approach can identify constitutive regulatory circuits in gene expression data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 349-370.
    3. Trendelina Rrustemi & Katrina Meyer & Yvette Roske & Bora Uyar & Altuna Akalin & Koshi Imami & Yasushi Ishihama & Oliver Daumke & Matthias Selbach, 2024. "Pathogenic mutations of human phosphorylation sites affect protein–protein interactions," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Benjamin A Shoemaker & Anna R Panchenko, 2007. "Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners," PLOS Computational Biology, Public Library of Science, vol. 3(4), pages 1-7, April.
    5. Tracy Chih-Ting Koubkova-Yu & Jung-Chi Chao & Jun-Yi Leu, 2018. "Heterologous Hsp90 promotes phenotypic diversity through network evolution," PLOS Biology, Public Library of Science, vol. 16(11), pages 1-29, November.
    6. Lele Hu & Tao Huang & Xiaohe Shi & Wen-Cong Lu & Yu-Dong Cai & Kuo-Chen Chou, 2011. "Predicting Functions of Proteins in Mouse Based on Weighted Protein-Protein Interaction Network and Protein Hybrid Properties," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-10, January.
    7. Benedikt Boecking & Vincent Jeanselme & Artur Dubrawski, 2024. "Constrained clustering and multiple kernel learning without pairwise constraint relaxation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 309-324, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0017258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.