IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0012869.html
   My bibliography  Save this article

Near Scale-Free Dynamics in Neural Population Activity of Waking/Sleeping Rats Revealed by Multiscale Analysis

Author

Listed:
  • Leonid A Safonov
  • Yoshikazu Isomura
  • Siu Kang
  • Zbigniew R Struzik
  • Tomoki Fukai
  • Hideyuki Câteau

Abstract

A neuron embedded in an intact brain, unlike an isolated neuron, participates in network activity at various spatial resolutions. Such multiple scale spatial dynamics is potentially reflected in multiple time scales of temporal dynamics. We identify such multiple dynamical time scales of the inter-spike interval (ISI) fluctuations of neurons of waking/sleeping rats by means of multiscale analysis. The time scale of large non-Gaussianity in the ISI fluctuations, measured with the Castaing method, ranges up to several minutes, markedly escaping the low-pass filtering characteristics of neurons. A comparison between neural activity during waking and sleeping reveals that non-Gaussianity is stronger during waking than sleeping throughout the entire range of scales observed. We find a remarkable property of near scale independence of the magnitude correlations as the primary cause of persistent non-Gaussianity. Such scale-invariance of correlations is characteristic of multiplicative cascade processes and raises the possibility of the existence of a scale independent memory preserving mechanism.

Suggested Citation

  • Leonid A Safonov & Yoshikazu Isomura & Siu Kang & Zbigniew R Struzik & Tomoki Fukai & Hideyuki Câteau, 2010. "Near Scale-Free Dynamics in Neural Population Activity of Waking/Sleeping Rats Revealed by Multiscale Analysis," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-11, September.
  • Handle: RePEc:plo:pone00:0012869
    DOI: 10.1371/journal.pone.0012869
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012869
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0012869&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0012869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bacry, E. & Delour, J. & Muzy, J.F., 2001. "Modelling financial time series using multifractal random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 84-92.
    2. Volman, Vladislav & Baruchi, Itay & Persi, Erez & Ben-Jacob, Eshel, 2004. "Generative modelling of regulated dynamical behavior in cultured neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 249-278.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grahovac, Danijel & Leonenko, Nikolai N., 2014. "Detecting multifractal stochastic processes under heavy-tailed effects," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 78-89.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian M. Hafner, 2012. "Cross-correlating wavelet coefficients with applications to high-frequency financial time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1363-1379, December.
    2. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    3. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    4. Lee, Chung Kung & Chin Yu, Chung & Cai Wang, Cheng & Der Hwang, Ruey & Kuen Yu, Guey, 2006. "Scaling characteristics in aftershock sequence of earthquake," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 692-702.
    5. Wei, Kun & Zhang, Youxin & Luo, Yi, 2018. "Variance-mediated multifractal analysis of group participation in chasing a single dangerous prey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1275-1287.
    6. Makowiec, Danuta & Gała¸ska, Rafał & Dudkowska, Aleksandra & Rynkiewicz, Andrzej & Zwierz, Marcin, 2006. "Long-range dependencies in heart rate signals—revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 632-644.
    7. Xavier Brouty & Matthieu Garcin, 2023. "Fractal properties, information theory, and market efficiency," Papers 2306.13371, arXiv.org.
    8. Ho, Ding-Shun & Lee, Chung-Kung & Wang, Cheng-Cai & Chuang, Mang, 2004. "Scaling characteristics in the Taiwan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 448-460.
    9. Rossitsa Yalamova, 2012. "Fractal Measures in Market Microstructure Research," Multinational Finance Journal, Multinational Finance Journal, vol. 16(1-2), pages 137-154, March - J.
    10. Li, Muyi & Huang, Yongxiang, 2014. "Hilbert–Huang Transform based multifractal analysis of China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 222-229.
    11. Rypdal, Martin & Sirnes, Espen & Løvsletten, Ola & Rypdal, Kristoffer, 2013. "Assessing market uncertainty by means of a time-varying intermittency parameter for asset price fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3335-3343.
    12. Wu, Peng & Muzy, Jean-François & Bacry, Emmanuel, 2022. "From rough to multifractal volatility: The log S-fBM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    13. Hosseinabadi, S. & Abrinaei, F. & Shirazi, M., 2017. "Statistical and fractal features of nanocrystalline AZO thin films," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 11-22.
    14. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    15. Rizvi, Syed Aun R. & Arshad, Shaista, 2017. "Analysis of the efficiency–integration nexus of Japanese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 296-308.
    16. Challet, Damien & Peirano, Pier Paolo, 2008. "The ups and downs of the renormalization group applied to financial time series," MPRA Paper 9770, University Library of Munich, Germany.
    17. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    18. Provash Mali & Amitabha Mukhopadhyay, 2015. "Multifractal characterization of gold market: a multifractal detrended fluctuation analysis," Papers 1506.08847, arXiv.org.
    19. Mei-Ling Cai & Zhang-HangJian Chen & Sai-Ping Li & Xiong Xiong & Wei Zhang & Ming-Yuan Yang & Fei Ren, 2022. "New volatility evolution model after extreme events," Papers 2201.03213, arXiv.org.
    20. Chen, Feier & Tian, Kang & Ding, Xiaoxu & Miao, Yuqi & Lu, Chunxia, 2016. "Finite-size effect and the components of multifractality in transport economics volatility based on multifractal detrending moving average method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1058-1066.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0012869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.