IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0012106.html
   My bibliography  Save this article

Limited Systemic Sclerosis Patients with Pulmonary Arterial Hypertension Show Biomarkers of Inflammation and Vascular Injury

Author

Listed:
  • Sarah A Pendergrass
  • Everett Hayes
  • Giuseppina Farina
  • Raphael Lemaire
  • Harrison W Farber
  • Michael L Whitfield
  • Robert Lafyatis

Abstract

Background: Pulmonary arterial hypertension (PAH) is a common complication for individuals with limited systemic sclerosis (lSSc). The identification and characterization of biomarkers for lSSc-PAH should lead to less invasive screening, a better understanding of pathogenesis, and improved treatment. Methods and Findings: Forty-nine PBMC samples were obtained from 21 lSSc subjects without PAH (lSSc-noPAH), 15 lSSc subjects with PAH (lSSc-PAH), and 10 healthy controls; three subjects provided PBMCs one year later. Genome-wide gene expression was measured for each sample. The levels of 89 cytokines were measured in serum from a subset of subjects by Multi-Analyte Profiling (MAP) immunoassays. Gene expression clearly distinguished lSSc samples from healthy controls, and separated lSSc-PAH from lSSc-NoPAH patients. Real-time quantitative PCR confirmed increased expression of 9 genes (ICAM1, IFNGR1, IL1B, IL13Ra1, JAK2, AIF1, CCR1, ALAS2, TIMP2) in lSSc-PAH patients. Increased circulating cytokine levels of inflammatory mediators such as TNF-alpha, IL1-beta, ICAM-1, and IL-6, and markers of vascular injury such as VCAM-1, VEGF, and von Willebrand Factor were found in lSSc-PAH subjects. Conclusions and Significance: The gene expression and cytokine profiles of lSSc-PAH patients suggest the presence of activated monocytes, and show markers of vascular injury and inflammation. These genes and factors could serve as biomarkers of PAH involvement in lSSc.

Suggested Citation

  • Sarah A Pendergrass & Everett Hayes & Giuseppina Farina & Raphael Lemaire & Harrison W Farber & Michael L Whitfield & Robert Lafyatis, 2010. "Limited Systemic Sclerosis Patients with Pulmonary Arterial Hypertension Show Biomarkers of Inflammation and Vascular Injury," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-13, August.
  • Handle: RePEc:plo:pone00:0012106
    DOI: 10.1371/journal.pone.0012106
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012106
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0012106&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0012106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yufeng & Hayes, David Neil & Nobel, Andrew & Marron, J. S, 2008. "Statistical Significance of Clustering for High-Dimension, Low–Sample Size Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1281-1293.
    2. Ausra Milano & Sarah A Pendergrass & Jennifer L Sargent & Lacy K George & Timothy H McCalmont & M Kari Connolly & Michael L Whitfield, 2008. "Molecular Subsets in the Gene Expression Signatures of Scleroderma Skin," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egashira, Kento & Yata, Kazuyoshi & Aoshima, Makoto, 2024. "Asymptotic properties of hierarchical clustering in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    2. Mihee Lee & Haipeng Shen & Jianhua Z. Huang & J. S. Marron, 2010. "Biclustering via Sparse Singular Value Decomposition," Biometrics, The International Biometric Society, vol. 66(4), pages 1087-1095, December.
    3. Patrick K. Kimes & Yufeng Liu & David Neil Hayes & James Stephen Marron, 2017. "Statistical significance for hierarchical clustering," Biometrics, The International Biometric Society, vol. 73(3), pages 811-821, September.
    4. Xiao Xu & Meera Ramanujam & Sudha Visvanathan & Shervin Assassi & Zheng Liu & Li Li, 2020. "Transcriptional insights into pathogenesis of cutaneous systemic sclerosis using pathway driven meta-analysis assisted by machine learning methods," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    5. Krzanowski, Wojtek J. & Hand, David J., 2009. "A simple method for screening variables before clustering microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2747-2753, May.
    6. Luca Beltrame & Lisa Rizzetto & Raffaele Paola & Philippe Rocca-Serra & Luca Gambineri & Cristina Battaglia & Duccio Cavalieri, 2009. "Using Pathway Signatures as Means of Identifying Similarities among Microarray Experiments," PLOS ONE, Public Library of Science, vol. 4(1), pages 1-11, January.
    7. Esaie Dufitimana & Jiong Wang & Divyani Kohli-Poll Jonker, 2024. "Leveraging Geospatial Information to Map Perceived Tenure Insecurity in Urban Deprivation Areas," Land, MDPI, vol. 13(9), pages 1-23, September.
    8. Kejun Wang & Xin Duan & Feng Gao & Wei Wang & Liangliang Liu & Xin Wang, 2018. "Dissecting cancer heterogeneity based on dimension reduction of transcriptomic profiles using extreme learning machines," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-19, September.
    9. Dario Bruzzese & Domenico Vistocco, 2015. "DESPOTA: DEndrogram Slicing through a PemutatiOn Test Approach," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 285-304, July.
    10. Hanwen Huang, 2017. "Controlling the false discoveries in LASSO," Biometrics, The International Biometric Society, vol. 73(4), pages 1102-1110, December.
    11. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    12. Nakayama, Yugo & Yata, Kazuyoshi & Aoshima, Makoto, 2021. "Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    13. J Matthew Mahoney & Jaclyn Taroni & Viktor Martyanov & Tammara A Wood & Casey S Greene & Patricia A Pioli & Monique E Hinchcliff & Michael L Whitfield, 2015. "Systems Level Analysis of Systemic Sclerosis Shows a Network of Immune and Profibrotic Pathways Connected with Genetic Polymorphisms," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-20, January.
    14. Zongwu Cai & Jiancheng Jiang & Jingshuang Zhang & Xibin Zhang, 2015. "A new semiparametric test for superior predictive ability," Empirical Economics, Springer, vol. 48(1), pages 389-405, February.
    15. Nixon, Paul & Gilbert, Evan, 2022. "Unsupervised machine learning to reveal South African risk behaviour archetypes in the domain of discretionary investment decisions," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
    16. Lee, Myung Hee, 2012. "On the border of extreme and mild spiked models in the HDLSS framework," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 162-168.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0012106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.