IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0010867.html
   My bibliography  Save this article

Ecosystem Carbon Stock Influenced by Plantation Practice: Implications for Planting Forests as a Measure of Climate Change Mitigation

Author

Listed:
  • Chengzhang Liao
  • Yiqi Luo
  • Changming Fang
  • Bo Li

Abstract

Uncertainties remain in the potential of forest plantations to sequestrate carbon (C). We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests). Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha−1 in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age (

Suggested Citation

  • Chengzhang Liao & Yiqi Luo & Changming Fang & Bo Li, 2010. "Ecosystem Carbon Stock Influenced by Plantation Practice: Implications for Planting Forests as a Measure of Climate Change Mitigation," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-6, May.
  • Handle: RePEc:plo:pone00:0010867
    DOI: 10.1371/journal.pone.0010867
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010867
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0010867&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0010867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel D. Richter & Daniel Markewitz & Susan E. Trumbore & Carol G. Wells, 1999. "Rapid accumulation and turnover of soil carbon in a re-establishing forest," Nature, Nature, vol. 400(6739), pages 56-58, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Na Su & Zhenbo Wang, 2022. "Visual Analysis of Global Carbon Mitigation Research Based on Scientific Knowledge Graphs," IJERPH, MDPI, vol. 19(9), pages 1-15, May.
    2. Rajan Parajuli & Omkar Joshi & Tek Maraseni, 2019. "Incorporating Forests, Agriculture, and Energy Consumption in the Framework of the Environmental Kuznets Curve: A Dynamic Panel Data Approach," Sustainability, MDPI, vol. 11(9), pages 1-11, May.
    3. Ryan Nedd & Katie Light & Marcia Owens & Neil James & Elijah Johnson & Aavudai Anandhi, 2021. "A Synthesis of Land Use/Land Cover Studies: Definitions, Classification Systems, Meta-Studies, Challenges and Knowledge Gaps on a Global Landscape," Land, MDPI, vol. 10(9), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parolari, Anthony J. & Porporato, Amilcare, 2016. "Forest soil carbon and nitrogen cycles under biomass harvest: Stability, transient response, and feedback," Ecological Modelling, Elsevier, vol. 329(C), pages 64-76.
    2. Ondřej HOLUBÍK & Vilém PODRÁZSKÝ & Jan VOPRAVIL & Tomáš KHEL & Jiří REMEŠ, 2014. "Effect of agricultural lands afforestation and tree species composition on the soil reaction, total organic carbon and nitrogen content in the uppermost mineral soil profile," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(4), pages 192-200.
    3. Xiaomin Qin & Dongmei Zhao & Baojun Zhang & Donghong Xiong & Zhengrong Yuan & Wenduo Zhang & Lin Liu & Dil Kumar Rai & Sheikh Laraib & Wei Deng, 2023. "Spatiotemporal Dynamics and Drivers of Wind Erosion during 1990–2020 in the Yarlung Zangbo River Basin, Southern Tibetan Plateau," Land, MDPI, vol. 12(9), pages 1-20, August.
    4. Hefeng Wang & Yishao Shi & Anbing Zhang & Yuan Cao & Haixin Liu, 2017. "Does Suburbanization Cause Ecological Deterioration? An Empirical Analysis of Shanghai, China," Sustainability, MDPI, vol. 9(1), pages 1-17, January.
    5. Tomas Selecky & Sonoko D. Bellingrath-Kimura & Yuji Kobata & Masaaki Yamada & Iraê A. Guerrini & Helio M. Umemura & Dinaldo A. Dos Santos, 2017. "Changes in Carbon Cycling during Development of Successional Agroforestry," Agriculture, MDPI, vol. 7(3), pages 1-12, March.
    6. Pérez-López, Paula & Gasol, Carles M. & Oliver-Solà, Jordi & Huelin, Sagrario & Moreira, Ma Teresa & Feijoo, Gumersindo, 2013. "Greenhouse gas emissions from Spanish motorway transport: Key aspects and mitigation solutions," Energy Policy, Elsevier, vol. 60(C), pages 705-713.
    7. Viorel Blujdea & David Bird & Carmenza Robledo, 2010. "Consistency and comparability of estimation and accounting of removal by sinks in afforestation/reforestation activities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(1), pages 1-18, January.
    8. R. Daniel Hanks & Robert F. Baldwin & Travis H. Folk & Ernie P. Wiggers & Richard H. Coen & Michael L. Gouin & Andrew Agha & Daniel D. Richter & Edda L. Fields-Black, 2021. "Mapping Antebellum Rice Fields as a Basis for Understanding Human and Ecological Consequences of the Era of Slavery," Land, MDPI, vol. 10(8), pages 1-15, August.
    9. Christopher Galik & Megan Mobley & Daniel Richter, 2009. "A virtual “field test” of forest management carbon offset protocols: the influence of accounting," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(7), pages 677-690, October.
    10. Huang, Lin & Liu, Jiyuan & Shao, Quanqin & Xu, Xinliang, 2012. "Carbon sequestration by forestation across China: Past, present, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1291-1299.
    11. Parolari, Anthony J. & Mobley, Megan L. & Bacon, Allan R. & Katul, Gabriel G. & Richter, Daniel deB. & Porporato, Amilcare, 2017. "Boom and bust carbon-nitrogen dynamics during reforestation," Ecological Modelling, Elsevier, vol. 360(C), pages 108-119.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0010867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.