IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0004607.html
   My bibliography  Save this article

Decision-Making in Research Tasks with Sequential Testing

Author

Listed:
  • Thomas Pfeiffer
  • David G Rand
  • Anna Dreber

Abstract

Background: In a recent controversial essay, published by JPA Ioannidis in PLoS Medicine, it has been argued that in some research fields, most of the published findings are false. Based on theoretical reasoning it can be shown that small effect sizes, error-prone tests, low priors of the tested hypotheses and biases in the evaluation and publication of research findings increase the fraction of false positives. These findings raise concerns about the reliability of research. However, they are based on a very simple scenario of scientific research, where single tests are used to evaluate independent hypotheses. Methodology/Principal Findings: In this study, we present computer simulations and experimental approaches for analyzing more realistic scenarios. In these scenarios, research tasks are solved sequentially, i.e. subsequent tests can be chosen depending on previous results. We investigate simple sequential testing and scenarios where only a selected subset of results can be published and used for future rounds of test choice. Results from computer simulations indicate that for the tasks analyzed in this study, the fraction of false among the positive findings declines over several rounds of testing if the most informative tests are performed. Our experiments show that human subjects frequently perform the most informative tests, leading to a decline of false positives as expected from the simulations. Conclusions/Significance: For the research tasks studied here, findings tend to become more reliable over time. We also find that the performance in those experimental settings where not all performed tests could be published turned out to be surprisingly inefficient. Our results may help optimize existing procedures used in the practice of scientific research and provide guidance for the development of novel forms of scholarly communication.

Suggested Citation

  • Thomas Pfeiffer & David G Rand & Anna Dreber, 2009. "Decision-Making in Research Tasks with Sequential Testing," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-9, February.
  • Handle: RePEc:plo:pone00:0004607
    DOI: 10.1371/journal.pone.0004607
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004607
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0004607&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0004607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sushil Bikhchandani & Sunil Sharma, 2001. "Herd Behavior in Financial Markets," IMF Staff Papers, Palgrave Macmillan, vol. 47(3), pages 1-1.
    2. Anderson, Lisa R & Holt, Charles A, 1997. "Information Cascades in the Laboratory," American Economic Review, American Economic Association, vol. 87(5), pages 847-862, December.
    3. Goodman, S.N. & Royall, R., 1988. "Evidence and scientific research," American Journal of Public Health, American Public Health Association, vol. 78(12), pages 1568-1574.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Cipriani & Antonio Guarino, 2009. "Herd Behavior in Financial Markets: An Experiment with Financial Market Professionals," Journal of the European Economic Association, MIT Press, vol. 7(1), pages 206-233, March.
    2. Pierdzioch, Christian & Reid, Monique B. & Gupta, Rangan, 2016. "Inflation forecasts and forecaster herding: Evidence from South African survey data," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 62(C), pages 42-50.
    3. Annamaria Fiore & Andrea Morone, 2005. "Is playing alone in the darkness sufficient to prevent informational cascades?," Experimental 0503002, University Library of Munich, Germany.
    4. Morone, Andrea & Fiore, Annamaria & Sandri, Serena, 2007. "On the absorbability of herd behaviour and informational cascades: an experimental analysis," Dresden Discussion Paper Series in Economics 15/07, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.
    5. Giovanni Ferri & Andrea Morone, 2014. "The effect of rating agencies on herd behaviour," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 9(1), pages 107-127, April.
    6. Hirshleifer, David & Teoh, Siew Hong, 2008. "Thought and Behavior Contagion in Capital Markets," MPRA Paper 9164, University Library of Munich, Germany.
    7. David Hirshleifer & Siew Hong Teoh, 2003. "Herd Behaviour and Cascading in Capital Markets: a Review and Synthesis," European Financial Management, European Financial Management Association, vol. 9(1), pages 25-66, March.
    8. Morone, Andrea & Sandri, Serena & Fiore, Annamaria, 2009. "On the absorbability of informational cascades in the laboratory," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 38(5), pages 728-738, October.
    9. Yung Chul Park & Shinji Takagi, 2012. "Managing Capital Flows in an Economic Community: The Case of ASEAN Capital Account Liberalization," Public Policy Review, Policy Research Institute, Ministry of Finance Japan, vol. 8(3), pages 299-320, August.
    10. Kraemer, Carlo & Noth, Markus & Weber, Martin, 2006. "Information aggregation with costly information and random ordering: Experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 59(3), pages 423-432, March.
    11. Fishman, Arthur & Fishman, Ram & Gneezy, Uri, 2019. "A tale of two food stands: Observational learning in the field," Journal of Economic Behavior & Organization, Elsevier, vol. 159(C), pages 101-108.
    12. Cavatorta, Elisa & Guarino, Antonio & Huck, Steffen, 2024. "Social learning with partial and aggregate information: Experimental evidence," Games and Economic Behavior, Elsevier, vol. 146(C), pages 292-307.
    13. Mohamed Es-Sanoun & Jude Gohou & Mounir Benboubker, 2023. "Testing of Herd Behavior In african Stock Markets During COVID-19 Pandemic [Essai de vérification du comportement mimétique dans les marchés boursiers africains au cours de la crise de covid-19]," Post-Print hal-04144289, HAL.
    14. Jacob K. Goeree & Leeat Yariv, 2015. "Conformity in the lab," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 1(1), pages 15-28, July.
    15. Boğaçhan Çelen & Kyle Hyndman, 2012. "An experiment of social learning with endogenous timing," Review of Economic Design, Springer;Society for Economic Design, vol. 16(2), pages 251-268, September.
    16. Barbara Alemanni & José Renato Haas Ornelas, 2006. "Herding Behavior by Equity Foreign Investors on Emerging Markets," Working Papers Series 125, Central Bank of Brazil, Research Department.
    17. repec:ebl:ecbull:v:3:y:2005:i:34:p:1-11 is not listed on IDEAS
    18. Vassilios Babalos & Mehmet Balcilar & Rangan Gupta, 2014. "Revisiting Herding Behavior in REITs: A Regime-Switching Approach," Working Papers 201448, University of Pretoria, Department of Economics.
    19. Faralla, Valeria & Borà, Guido & Innocenti, Alessandro & Novarese, Marco, 2020. "Promises in group decision making," Research in Economics, Elsevier, vol. 74(1), pages 1-11.
    20. Wang, Peiwen & Chen, Minghua & Wu, Ji & Yan, Yuanyun, 2023. "Do peer effects matter in bank risk? Some cross-country evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    21. Qin, Jie, 2015. "A model of regret, investor behavior, and market turbulence," Journal of Economic Theory, Elsevier, vol. 160(C), pages 150-174.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0004607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.