IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0004323.html
   My bibliography  Save this article

Chaotic Signatures of Heart Rate Variability and Its Power Spectrum in Health, Aging and Heart Failure

Author

Listed:
  • Guo-Qiang Wu
  • Natalia M Arzeno
  • Lin-Lin Shen
  • Da-Kan Tang
  • Da-An Zheng
  • Nai-Qing Zhao
  • Dwain L Eckberg
  • Chi-Sang Poon

Abstract

A paradox regarding the classic power spectral analysis of heart rate variability (HRV) is whether the characteristic high- (HF) and low-frequency (LF) spectral peaks represent stochastic or chaotic phenomena. Resolution of this fundamental issue is key to unraveling the mechanisms of HRV, which is critical to its proper use as a noninvasive marker for cardiac mortality risk assessment and stratification in congestive heart failure (CHF) and other cardiac dysfunctions. However, conventional techniques of nonlinear time series analysis generally lack sufficient sensitivity, specificity and robustness to discriminate chaos from random noise, much less quantify the chaos level. Here, we apply a ‘litmus test’ for heartbeat chaos based on a novel noise titration assay which affords a robust, specific, time-resolved and quantitative measure of the relative chaos level. Noise titration of running short-segment Holter tachograms from healthy subjects revealed circadian-dependent (or sleep/wake-dependent) heartbeat chaos that was linked to the HF component (respiratory sinus arrhythmia). The relative ‘HF chaos’ levels were similar in young and elderly subjects despite proportional age-related decreases in HF and LF power. In contrast, the near-regular heartbeat in CHF patients was primarily nonchaotic except punctuated by undetected ectopic beats and other abnormal beats, causing transient chaos. Such profound circadian-, age- and CHF-dependent changes in the chaotic and spectral characteristics of HRV were accompanied by little changes in approximate entropy, a measure of signal irregularity. The salient chaotic signatures of HRV in these subject groups reveal distinct autonomic, cardiac, respiratory and circadian/sleep-wake mechanisms that distinguish health and aging from CHF.

Suggested Citation

  • Guo-Qiang Wu & Natalia M Arzeno & Lin-Lin Shen & Da-Kan Tang & Da-An Zheng & Nai-Qing Zhao & Dwain L Eckberg & Chi-Sang Poon, 2009. "Chaotic Signatures of Heart Rate Variability and Its Power Spectrum in Health, Aging and Heart Failure," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-9, February.
  • Handle: RePEc:plo:pone00:0004323
    DOI: 10.1371/journal.pone.0004323
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004323
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0004323&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0004323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chi-Sang Poon & Christopher K. Merrill, 1997. "Decrease of cardiac chaos in congestive heart failure," Nature, Nature, vol. 389(6650), pages 492-495, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine U Viola & Eleonora Tobaldini & Sarah L Chellappa & Karina Rabello Casali & Alberto Porta & Nicola Montano, 2011. "Short-Term Complexity of Cardiac Autonomic Control during Sleep: REM as a Potential Risk Factor for Cardiovascular System in Aging," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-7, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Min & Meng, Guang & Feng, Zhengjin, 2006. "Security analysis of chaotic communication systems based on Volterra–Wiener–Korenberg model," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 264-270.
    2. Thuraisingham, Ranjit A. & Gottwald, Georg A., 2006. "On multiscale entropy analysis for physiological data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 323-332.
    3. Maurizio Manera, 2021. "Perspectives on Complexity, Chaos and Thermodynamics in Environmental Pathology," IJERPH, MDPI, vol. 18(11), pages 1-11, May.
    4. Yan, Bo & Palit, Sanjay K. & Mukherjee, Sayan & Banerjee, Santo, 2019. "Signature of complexity in time–frequency domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Kadji, H.G. Enjieu & Orou, J.B. Chabi & Yamapi, R. & Woafo, P., 2007. "Nonlinear dynamics and strange attractors in the biological system," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 862-882.
    6. Saul Hazledine & Jongho Sun & Derin Wysham & J Allan Downie & Giles E D Oldroyd & Richard J Morris, 2009. "Nonlinear Time Series Analysis of Nodulation Factor Induced Calcium Oscillations: Evidence for Deterministic Chaos?," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-10, August.
    7. Dirk Cysarz & Maijana Linhard & Friedrich Edelhäuser & Alfred Längler & Peter Van Leeuwen & Günter Henze & Georg Seifert, 2011. "Unexpected Course of Nonlinear Cardiac Interbeat Interval Dynamics during Childhood and Adolescence," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-9, May.
    8. Yujie Zhu & Mohamed A Hanafy & Cheryl R Killingsworth & Gregory P Walcott & Martin E Young & Steven M Pogwizd, 2014. "Morning Surge of Ventricular Arrhythmias in a New Arrhythmogenic Canine Model of Chronic Heart Failure Is Associated with Attenuation of Time-Of-Day Dependence of Heart Rate and Autonomic Adaptation, ," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    9. Mukherjee, Sayan & Banerjee, Santo & Rondoni, Lamberto, 2018. "Dispersive graded entropy on computing dynamical complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 131-140.
    10. Zhang, Yu & Sprecher, Alicia J. & Zhao, ZongXi & Jiang, Jack J., 2011. "Nonlinear detection of disordered voice productions from short time series based on a Volterra–Wiener–Korenberg model," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 751-758.
    11. Gaetano Valenza & Luca Citi & Riccardo Barbieri, 2014. "Estimation of Instantaneous Complex Dynamics through Lyapunov Exponents: A Study on Heartbeat Dynamics," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-17, August.
    12. Bhaduri, Anirban & Bhaduri, Susmita & Ghosh, Dipak, 2017. "Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 786-795.
    13. Sviridova, Nina & Sakai, Kenshi, 2015. "Human photoplethysmogram: new insight into chaotic characteristics," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 53-63.
    14. Andrew C Ahn & Muneesh Tewari & Chi-Sang Poon & Russell S Phillips, 2006. "The Limits of Reductionism in Medicine: Could Systems Biology Offer an Alternative?," PLOS Medicine, Public Library of Science, vol. 3(6), pages 1-1, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0004323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.