IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v389y1997i6650d10.1038_39043.html
   My bibliography  Save this article

Decrease of cardiac chaos in congestive heart failure

Author

Listed:
  • Chi-Sang Poon

    (Massachusetts Institute of Technology)

  • Christopher K. Merrill

    (Massachusetts Institute of Technology)

Abstract

The electrical properties of the mammalian heart undergo many complex transitions in normal and diseased states1,2,3,4,5,6,7. It has been proposed that the normal heartbeat may display complex nonlinear dynamics, including deterministic chaos8,9, and that such cardiac chaos may be a useful physiological marker for the diagnosis10,11,12 and management13,14 of certain heart trouble. However, it is not clear whether the heartbeat series of healthy and diseased hearts are chaotic or stochastic15,16,17, or whether cardiac chaos represents normal or abnormal behaviour18. Here we have used a highly sensitive technique, which is robust to random noise, to detect chaos19. We analysed the electrocardiograms from a group of healthy subjects and those with severe congestive heart failure (CHF), a clinical condition associated with a high risk of sudden death. The short-term variations of beat-to-beat interval exhibited strongly and consistently chaotic behaviour in all healthy subjects, but were frequently interrupted by periods of seemingly non-chaotic fluctuations in patients with CHF. Chaotic dynamics in the CHF data, even when discernible, exhibited a high degree of random variability over time, suggesting a weaker form of chaos. These findings suggest that cardiac chaos is prevalent in healthy heart, and a decrease in such chaos may be indicative of CHF.

Suggested Citation

  • Chi-Sang Poon & Christopher K. Merrill, 1997. "Decrease of cardiac chaos in congestive heart failure," Nature, Nature, vol. 389(6650), pages 492-495, October.
  • Handle: RePEc:nat:nature:v:389:y:1997:i:6650:d:10.1038_39043
    DOI: 10.1038/39043
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/39043
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/39043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yu & Sprecher, Alicia J. & Zhao, ZongXi & Jiang, Jack J., 2011. "Nonlinear detection of disordered voice productions from short time series based on a Volterra–Wiener–Korenberg model," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 751-758.
    2. Sviridova, Nina & Sakai, Kenshi, 2015. "Human photoplethysmogram: new insight into chaotic characteristics," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 53-63.
    3. Gaetano Valenza & Luca Citi & Riccardo Barbieri, 2014. "Estimation of Instantaneous Complex Dynamics through Lyapunov Exponents: A Study on Heartbeat Dynamics," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-17, August.
    4. Mukherjee, Sayan & Banerjee, Santo & Rondoni, Lamberto, 2018. "Dispersive graded entropy on computing dynamical complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 131-140.
    5. Lei, Min & Meng, Guang & Feng, Zhengjin, 2006. "Security analysis of chaotic communication systems based on Volterra–Wiener–Korenberg model," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 264-270.
    6. Yan, Bo & Palit, Sanjay K. & Mukherjee, Sayan & Banerjee, Santo, 2019. "Signature of complexity in time–frequency domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    7. Saul Hazledine & Jongho Sun & Derin Wysham & J Allan Downie & Giles E D Oldroyd & Richard J Morris, 2009. "Nonlinear Time Series Analysis of Nodulation Factor Induced Calcium Oscillations: Evidence for Deterministic Chaos?," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-10, August.
    8. Thuraisingham, Ranjit A. & Gottwald, Georg A., 2006. "On multiscale entropy analysis for physiological data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 323-332.
    9. Bhaduri, Anirban & Bhaduri, Susmita & Ghosh, Dipak, 2017. "Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 786-795.
    10. Kadji, H.G. Enjieu & Orou, J.B. Chabi & Yamapi, R. & Woafo, P., 2007. "Nonlinear dynamics and strange attractors in the biological system," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 862-882.
    11. Maurizio Manera, 2021. "Perspectives on Complexity, Chaos and Thermodynamics in Environmental Pathology," IJERPH, MDPI, vol. 18(11), pages 1-11, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:389:y:1997:i:6650:d:10.1038_39043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.