IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0003479.html
   My bibliography  Save this article

Finding Quasi-Optimal Network Topologies for Information Transmission in Active Networks

Author

Listed:
  • Murilo S Baptista
  • Josué X de Carvalho
  • Mahir S Hussein

Abstract

This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.

Suggested Citation

  • Murilo S Baptista & Josué X de Carvalho & Mahir S Hussein, 2008. "Finding Quasi-Optimal Network Topologies for Information Transmission in Active Networks," PLOS ONE, Public Library of Science, vol. 3(10), pages 1-11, October.
  • Handle: RePEc:plo:pone00:0003479
    DOI: 10.1371/journal.pone.0003479
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003479
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0003479&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0003479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Perc, Matjaž, 2007. "Effects of small-world connectivity on noise-induced temporal and spatial order in neural media," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 280-291.
    2. V Anne Smith & Jing Yu & Tom V Smulders & Alexander J Hartemink & Erich D Jarvis, 2006. "Computational Inference of Neural Information Flow Networks," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qingyun & Zheng, Yanhong & Ma, Jun, 2013. "Cooperative dynamics in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 19-27.
    2. Yuan, Guoyong & Xu, Lin & Xu, Aiguo & Wang, Guangrui & Yang, Shiping, 2011. "Spiral waves in excitable media due to noise and periodic forcing," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 728-738.
    3. Upadhyay, Ranjit Kumar & Paul, Chinmoy & Mondal, Argha & Vishwakarma, Gajendra K., 2018. "Estimation of biophysical parameters in a neuron model under random fluctuations," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 364-373.
    4. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Vibrational resonance in adaptive small-world neuronal networks with spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 170-179.
    5. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 307-317.
    7. Rostami, Zahra & Rajagopal, Karthikeyan & Khalaf, Abdul Jalil M. & Jafari, Sajad & Perc, Matjaž & Slavinec, Mitja, 2018. "Wavefront-obstacle interactions and the initiation of reentry in excitable media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1162-1173.
    8. Iqbal, Naveed & Wu, Ranchao & Liu, Biao, 2017. "Pattern formation by super-diffusion in FitzHugh–Nagumo model," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 245-258.
    9. Guo, Xinmeng & Wang, Jiang & Liu, Jing & Yu, Haitao & Galán, Roberto F. & Cao, Yibin & Deng, Bin, 2017. "Optimal time scales of input fluctuations for spiking coherence and reliability in stochastic Hodgkin–Huxley neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 381-390.
    10. Xu, Ying & Ren, Guodong & Ma, Jun, 2023. "Patterns stability in cardiac tissue under spatial electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    11. Anirban Das & Alec G. Sheffield & Anirvan S. Nandy & Monika P. Jadi, 2024. "Brain-state mediated modulation of inter-laminar dependencies in visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Ma, Jun & Wu, Fuqiang & Hayat, Tasawar & Zhou, Ping & Tang, Jun, 2017. "Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 508-516.
    13. Hao, Yinghang & Gong, Yubing & Wang, Li & Ma, Xiaoguang & Yang, Chuanlu, 2011. "Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 260-268.
    14. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    15. Seif Eldawlatly & Karim G Oweiss, 2011. "Millisecond-Timescale Local Network Coding in the Rat Primary Somatosensory Cortex," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-14, June.
    16. Ford, Neville J. & Lima, Pedro M. & Lumb, Patricia M., 2017. "Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh–Nagumo equation," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 448-460.
    17. Fedaravičius, Augustinas Povilas & Cao, Maosen & Ragulskis, Minvydas, 2016. "Control of a dendritic neuron driven by a phase-independent stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 77-83.
    18. Xie, Huijuan & Gong, Yubing & Wang, Baoying, 2018. "Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 1-7.
    19. Wang, Jiang & Guo, Xinmeng & Yu, Haitao & Liu, Chen & Deng, Bin & Wei, Xile & Chen, Yingyuan, 2014. "Stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 40-48.
    20. Xie, Huijuan & Gong, Yubing, 2017. "Multiple coherence resonances and synchronization transitions by time delay in adaptive scale-free neuronal networks with spike-timing-dependent plasticity," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 80-85.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0003479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.