IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v509y2018icp1162-1173.html
   My bibliography  Save this article

Wavefront-obstacle interactions and the initiation of reentry in excitable media

Author

Listed:
  • Rostami, Zahra
  • Rajagopal, Karthikeyan
  • Khalaf, Abdul Jalil M.
  • Jafari, Sajad
  • Perc, Matjaž
  • Slavinec, Mitja

Abstract

The combination of the heart’s electrical and mechanical activities gives rise to complex dynamics. The reentry, which is one of the most prominent types of heart arrhythmias, is the result of an abnormal electrical activity in the cardiac tissue. These abnormalities are often associated with local non-excitable or partially excitable areas in the cardiac tissue called obstacles. In fact, the proper rhythm for the constriction of cardiomyocytes can be broken by these abnormal obstacles. In this study, we investigate the electrical patterns in a model of excitable media resulting from the interaction between the obstacle and the wavefronts. We consider a slice of cardiac tissue with a rectangular obstacle in vertical and horizontal orientation. Our research reveals that the interaction of the wavefront-obstacle can give rise to reentry and spiral waves. It is also found that a wider section of the obstacle towards the direction of wave propagation causes more deformation in the spatial patterns. In addition, since it can postpone reentry, the continuity of the successive plane waves also determines the resulting spatial patterns.

Suggested Citation

  • Rostami, Zahra & Rajagopal, Karthikeyan & Khalaf, Abdul Jalil M. & Jafari, Sajad & Perc, Matjaž & Slavinec, Mitja, 2018. "Wavefront-obstacle interactions and the initiation of reentry in excitable media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1162-1173.
  • Handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:1162-1173
    DOI: 10.1016/j.physa.2018.06.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118307866
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.06.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olmos-Liceaga, Daniel & Ocejo-Monge, Humberto, 2017. "On the generation of spiral and scroll waves by periodic stimulation of excitable media in the presence of obstacles of minimum size," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 162-170.
    2. Perc, Matjaž, 2007. "Effects of small-world connectivity on noise-induced temporal and spatial order in neural media," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 280-291.
    3. Wu, Fuqiang & Wang, Ya & Ma, Jun & Jin, Wuyin & Hobiny, Aatef, 2018. "Multi-channels coupling-induced pattern transition in a tri-layer neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 54-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Yang F. & Fuller, Chase A. & McGuire, Margaret K. & Glaser, Rebecca & Smith, Nathaniel J. & Manz, Niklas & Lindner, John F., 2021. "Disruption and recovery of reaction–diffusion wavefronts interacting with concave, fractal, and soft obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Rajagopal, Karthikeyan & Nezhad Hajian, Dorsa & Natiq, Hayder & Peng, Yuexi & Parastesh, Fatemeh & Jafari, Sajad, 2024. "Effect of Gaussian gradient in the medium's action potential morphology on spiral waves," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    3. Rajagopal, Karthikeyan & Hussain, Iqtadar & Rostami, Zahra & Li, Chunbiao & Pham, Viet-Thanh & Jafari, Sajad, 2021. "Magnetic induction can control the effect of external electrical stimuli on the spiral wave," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    4. Parastesh, Fatemeh & Rajagopal, Karthikeyan & Alsaadi, Fawaz E. & Hayat, Tasawar & Pham, V.-T. & Hussain, Iqtadar, 2019. "Birth and death of spiral waves in a network of Hindmarsh–Rose neurons with exponential magnetic flux and excitable media," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 377-384.
    5. Wang, Zhen & Rostami, Zahra & Jafari, Sajad & Alsaadi, Fawaz E. & Slavinec, Mitja & Perc, Matjaž, 2019. "Suppression of spiral wave turbulence by means of periodic plane waves in two-layer excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 229-233.
    6. Panahi, Shirin & Shirzadian, Touraj & Jalili, Mahdi & Jafari, Sajad, 2019. "A new chaotic network model for epilepsy," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 395-407.
    7. Smith, Nathaniel J. & Glaser, Rebecca & Hui, Vincent W.H. & Lindner, John F. & Manz, Niklas, 2019. "Disruption and recovery of reaction–diffusion wavefronts colliding with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 307-320.
    8. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostami, Zahra & Pham, Viet-Thanh & Jafari, Sajad & Hadaeghi, Fatemeh & Ma, Jun, 2018. "Taking control of initiated propagating wave in a neuronal network using magnetic radiation," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 141-151.
    2. Ouannas, Adel & Batiha, Iqbal M. & Bekiros, Stelios & Liu, Jinping & Jahanshahi, Hadi & Aly, Ayman A. & Alghtani, Abdulaziz H., 2021. "Synchronization of the glycolysis reaction-diffusion model via linear control law," LSE Research Online Documents on Economics 112776, London School of Economics and Political Science, LSE Library.
    3. Yuan, Guoyong & Xu, Lin & Xu, Aiguo & Wang, Guangrui & Yang, Shiping, 2011. "Spiral waves in excitable media due to noise and periodic forcing," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 728-738.
    4. Upadhyay, Ranjit Kumar & Paul, Chinmoy & Mondal, Argha & Vishwakarma, Gajendra K., 2018. "Estimation of biophysical parameters in a neuron model under random fluctuations," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 364-373.
    5. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Vibrational resonance in adaptive small-world neuronal networks with spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 170-179.
    6. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 307-317.
    7. Iqbal, Naveed & Wu, Ranchao & Liu, Biao, 2017. "Pattern formation by super-diffusion in FitzHugh–Nagumo model," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 245-258.
    8. Xie, Huijuan & Gong, Yubing & Wang, Baoying, 2018. "Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 1-7.
    9. Wang, Jiang & Guo, Xinmeng & Yu, Haitao & Liu, Chen & Deng, Bin & Wei, Xile & Chen, Yingyuan, 2014. "Stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 40-48.
    10. Yu, Haitao & Wang, Jiang & Liu, Chen & Deng, Bin & Wei, Xile, 2013. "Delay-induced synchronization transitions in small-world neuronal networks with hybrid electrical and chemical synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5473-5480.
    11. Rajagopal, Karthikeyan & Nezhad Hajian, Dorsa & Natiq, Hayder & Peng, Yuexi & Parastesh, Fatemeh & Jafari, Sajad, 2024. "Effect of Gaussian gradient in the medium's action potential morphology on spiral waves," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    12. Cheng, Guanghui & Gui, Rong & Yao, Yuangen & Yi, Ming, 2019. "Enhancement of temporal regularity and degradation of spatial synchronization induced by cross-correlated sine-Wiener noises in regular and small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 361-369.
    13. Wu, Fuqiang & Wang, Chunni & Jin, Wuyin & Ma, Jun, 2017. "Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 81-88.
    14. Wu, Fuqiang & Zhou, Ping & Alsaedi, Ahmed & Hayat, Tasawar & Ma, Jun, 2018. "Synchronization dependence on initial setting of chaotic systems without equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 124-132.
    15. Yao, Zhao & Zhou, Ping & Alsaedi, Ahmed & Ma, Jun, 2020. "Energy flow-guided synchronization between chaotic circuits," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    16. Ma, Jun & Wang, Ya & Wang, Chunni & Xu, Ying & Ren, Guodong, 2017. "Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 219-225.
    17. El-Nabulsi, Rami Ahmad & Anukool, Waranont, 2024. "Spiral waves in fractal dimensions and their elimination in λ − ω systems with less damaging intervention," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    18. Wang, Qingyun & Zheng, Yanhong & Ma, Jun, 2013. "Cooperative dynamics in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 19-27.
    19. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    20. Guo, Xinmeng & Wang, Jiang & Liu, Jing & Yu, Haitao & Galán, Roberto F. & Cao, Yibin & Deng, Bin, 2017. "Optimal time scales of input fluctuations for spiking coherence and reliability in stochastic Hodgkin–Huxley neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 381-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:1162-1173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.