IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0002757.html
   My bibliography  Save this article

Universal Scaling in the Branching of the Tree of Life

Author

Listed:
  • E Alejandro Herrada
  • Claudio J Tessone
  • Konstantin Klemm
  • Víctor M Eguíluz
  • Emilio Hernández-García
  • Carlos M Duarte

Abstract

Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be extended down to intra-specific relationships. Here we examine the topological properties of a large set of interspecific and intraspecific phylogenies and show that the branching patterns follow allometric rules conserved across the different levels in the Tree of Life, all significantly departing from those expected from the standard null models. The finding of non-random universal patterns of phylogenetic differentiation suggests that similar evolutionary forces drive diversification across the broad range of scales, from macro-evolutionary to micro-evolutionary processes, shaping the diversity of life on the planet.

Suggested Citation

  • E Alejandro Herrada & Claudio J Tessone & Konstantin Klemm & Víctor M Eguíluz & Emilio Hernández-García & Carlos M Duarte, 2008. "Universal Scaling in the Branching of the Tree of Life," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-6, July.
  • Handle: RePEc:plo:pone00:0002757
    DOI: 10.1371/journal.pone.0002757
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002757
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0002757&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0002757?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Camacho & A. Arenas, 2005. "Universal scaling in food-web structure?," Nature, Nature, vol. 435(7044), pages 3-4, June.
    2. Andy Purvis & Andy Hector, 2000. "Getting the measure of biodiversity," Nature, Nature, vol. 405(6783), pages 212-219, May.
    3. Diego Garlaschelli & Guido Caldarelli & Luciano Pietronero, 2003. "Universal scaling relations in food webs," Nature, Nature, vol. 423(6936), pages 165-168, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristian R Altaba, 2009. "Universal Artifacts Affect the Branching of Phylogenetic Trees, Not Universal Scaling Laws," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-13, February.
    2. Peiteng Shi & Jiang Zhang & Bo Yang & Jingfei Luo, 2014. "Hierarchicality of Trade Flow Networks Reveals Complexity of Products," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    3. Peiteng Shi & Jiang Zhang & Bo Yang & Jingfei Luo, 2014. "Hierarchicality of Trade Flow Networks Reveals Complexity of Products," Papers 1401.3103, arXiv.org.
    4. Király, Balázs & Borsos, István & Szabó, György, 2023. "Quantification and statistical analysis of topological features of recursive trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang Zhang & Lingfei Wu, 2013. "Allometry and Dissipation of Ecological Flow Networks," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    2. PK Gupta, 2018. "An Assessment of Relative Risks to Human/Ecological Health Biotech Crops versus Other Human Activities," Current Investigations in Agriculture and Current Research, Lupine Publishers, LLC, vol. 1(2), pages 51-62, February.
    3. Menezes, J. & Moura, B., 2022. "Pattern formation and coarsening dynamics in apparent competition models," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Stoeckli, Sabrina & Merian, Sybilla & Wanner, Silvan & Stucki, Matthias & Chaudhary, Abhishek, 2024. "Advancing Biodiversity Footprinting for Food-Related Behavior Change," OSF Preprints zpvq4, Center for Open Science.
    6. Pachepsky, Elizaveta & Bown, James L. & Eberst, Alistair & Bausenwein, Ursula & Millard, Peter & Squire, Geoff R. & Crawford, John W., 2007. "Consequences of intraspecific variation for the structure and function of ecological communities Part 2: Linking diversity and function," Ecological Modelling, Elsevier, vol. 207(2), pages 277-285.
    7. Winands, Sarah & Holm-Müller, Karin & Weikard, Hans-Peter, 2013. "The biodiversity conservation game with heterogeneous countries," Ecological Economics, Elsevier, vol. 89(C), pages 14-23.
    8. Hopton, Matthew E. & Karunanithi, Arunprakash T. & Garmestani, Ahjond S. & White, Denis & Choate, Jerry R. & Cabezas, Heriberto, 2017. "A supplementary tool to existing approaches for assessing ecosystem community structure," Ecological Modelling, Elsevier, vol. 355(C), pages 64-69.
    9. Jian Zhang & Michael S. Vogeley & Chaomei Chen, 2011. "Scientometrics of big science: a case study of research in the Sloan Digital Sky Survey," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 1-14, January.
    10. Tenorio, M. & Rangel, E. & Menezes, J., 2022. "Adaptive movement strategy in rock-paper-scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    11. Praveen, K.V. & Aditya, K.S. & Anbukkani, P. & Kumar, P. & Kar A., 2017. "Spatial Diversity in Indian Wheat and its Determinants," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 30(2).
    12. Menezes, J. & Barbalho, R., 2023. "How multiple weak species jeopardise biodiversity in spatial rock–paper–scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Meinard, Yves & Grill, Philippe, 2011. "The economic valuation of biodiversity as an abstract good," Ecological Economics, Elsevier, vol. 70(10), pages 1707-1714, August.
    14. Scotti, Marco & Bondavalli, Cristina & Bodini, Antonio, 2009. "Linking trophic positions and flow structure constraints in ecological networks: Energy transfer efficiency or topology effect?," Ecological Modelling, Elsevier, vol. 220(21), pages 3070-3080.
    15. Dehuan Li & Wei Sun & Fan Xia & Yixuan Yang & Yujing Xie, 2021. "Can Habitat Quality Index Measured Using the InVEST Model Explain Variations in Bird Diversity in an Urban Area?," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    16. Fang, Yinhai & Xu, Haiyan & Perc, Matjaž & Tan, Qingmei, 2019. "Dynamic evolution of economic networks under the influence of mergers and divestitures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 89-99.
    17. Vanessa Gabel & Robert Home & Sibylle Stöckli & Matthias Meier & Matthias Stolze & Ulrich Köpke, 2018. "Evaluating On-Farm Biodiversity: A Comparison of Assessment Methods," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    18. Nobi, Ashadun & Lee, Tae Ho & Lee, Jae Woo, 2020. "Structure of trade flow networks for world commodities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    19. Wahyu Catur Adinugroho & Lilik Budi Prasetyo & Cecep Kusmana & Haruni Krisnawati & Christopher J. Weston & Liubov Volkova, 2022. "Recovery of Carbon and Vegetation Diversity 23 Years after Fire in a Tropical Dryland Forest of Indonesia," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    20. Liu, Yuxian & Rousseau, Ronald & Egghe, Leo, 2017. "Partial orders for zero-sum arrays with applications to network theory," Journal of Informetrics, Elsevier, vol. 11(1), pages 257-274.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0002757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.