IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0006857.html
   My bibliography  Save this article

Predictive risk mapping of an environmentally-driven infectious disease using spatial Bayesian networks: A case study of leptospirosis in Fiji

Author

Listed:
  • Helen J Mayfield
  • Carl S Smith
  • John H Lowry
  • Conall H Watson
  • Michael G Baker
  • Mike Kama
  • Eric J Nilles
  • Colleen L Lau

Abstract

Introduction: Leptospirosis is a zoonotic disease responsible for over 1 million severe cases and 60,000 deaths annually. The wide range of animal hosts and complex environmental drivers of transmission make targeted interventions challenging, particularly when restricted to regression-based analyses which have limited ability to deal with complexity. In Fiji, important environmental and socio-demographic factors include living in rural areas, poverty, and livestock exposure. This study aims to examine drivers of transmission under different scenarios of environmental and livestock exposures. Methods: Spatial Bayesian networks (SBN) were used to analyse the influence of livestock and poverty on the risk of leptospirosis infection in urban compared to rural areas. The SBN models used a combination of spatially-explicit field data from previous work and publically available census information. Predictive risk maps were produced for overall risk, and for scenarios related to poverty, livestock, and urban/rural setting. Results: While high, rather than low, commercial dairy farm density similarly increased the risk of infection in both urban (12% to 18%) and rural areas (70% to 79%), the presence of pigs in a village had different impact in rural (43% to 84%) compared with urban areas (4% to 24%). Areas with high poverty rates were predicted to have 26.6% and 18.0% higher probability of above average seroprevalence in rural and urban areas, respectively. In urban areas, this represents >300% difference between areas of low and high poverty, compared to 43% difference in rural areas. Conclusions: Our study demonstrates the use of SBN to provide valuable insights into the drivers of leptospirosis transmission under complex scenarios. By estimating the risk of leptospirosis infection under different scenarios, such as urban versus rural areas, these subgroups or areas can be targeted with more precise interventions that focus on the most relevant key drivers of infection. Author summary: Leptospirosis is a zoonotic disease responsible for over 60,000 deaths annually and is transmitted from mammal hosts to humans through contact with infected urine. The range of possible hosts and complex environmental factors related to transmission make targeted interventions challenging. We used spatial Bayesian Networks applied to a case study in Fiji to show that livestock exposure and poverty affect the probability of infection differently in rural compared to urban areas. This work illustrates the complexity of leptospirosis transmission drivers in Fiji, and shows how they are affected by the interactions between livestock exposure and other environmental and socio-demographic factors. In doing so, we support previous findings linking the risk of leptospirosis to poverty.

Suggested Citation

  • Helen J Mayfield & Carl S Smith & John H Lowry & Conall H Watson & Michael G Baker & Mike Kama & Eric J Nilles & Colleen L Lau, 2018. "Predictive risk mapping of an environmentally-driven infectious disease using spatial Bayesian networks: A case study of leptospirosis in Fiji," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(10), pages 1-16, October.
  • Handle: RePEc:plo:pntd00:0006857
    DOI: 10.1371/journal.pntd.0006857
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0006857
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0006857&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0006857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcot, Bruce G., 2017. "Common quandaries and their practical solutions in Bayesian network modeling," Ecological Modelling, Elsevier, vol. 358(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dennis Wagenaar & Tiaravanni Hermawan & Marc J. C. van den Homberg & Jeroen C. J. H. Aerts & Heidi Kreibich & Hans de Moel & Laurens M. Bouwer, 2021. "Improved Transferability of Data‐Driven Damage Models Through Sample Selection Bias Correction," Risk Analysis, John Wiley & Sons, vol. 41(1), pages 37-55, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solveig Höfer & Alex Ziemba & Ghada El Serafy, 2020. "A Bayesian approach to ecosystem service trade-off analysis utilizing expert knowledge," Environment Systems and Decisions, Springer, vol. 40(1), pages 67-83, March.
    2. Rui Han & Shiqi Yang, 2023. "A Study on Industrial Heritage Renewal Strategy Based on Hybrid Bayesian Network," Sustainability, MDPI, vol. 15(13), pages 1-32, July.
    3. Mayfield, Helen J. & Bertone, Edoardo & Smith, Carl & Sahin, Oz, 2020. "Use of a structure aware discretisation algorithm for Bayesian networks applied to water quality predictions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 192-201.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0006857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.