Author
Listed:
- Yien Ling Hii
- Joacim Rocklöv
- Stig Wall
- Lee Ching Ng
- Choon Siang Tang
- Nawi Ng
Abstract
Background: A dengue early warning system aims to prevent a dengue outbreak by providing an accurate prediction of a rise in dengue cases and sufficient time to allow timely decisions and preventive measures to be taken by local authorities. This study seeks to identify the optimal lead time for warning of dengue cases in Singapore given the duration required by a local authority to curb an outbreak. Methodology and Findings: We developed a Poisson regression model to analyze relative risks of dengue cases as functions of weekly mean temperature and cumulative rainfall with lag times of 1–5 months using spline functions. We examined the duration of vector control and cluster management in dengue clusters > = 10 cases from 2000 to 2010 and used the information as an indicative window of the time required to mitigate an outbreak. Finally, we assessed the gap between forecast and successful control to determine the optimal timing for issuing an early warning in the study area. Our findings show that increasing weekly mean temperature and cumulative rainfall precede risks of increasing dengue cases by 4–20 and 8–20 weeks, respectively. These lag times provided a forecast window of 1–5 months based on the observed weather data. Based on previous vector control operations, the time needed to curb dengue outbreaks ranged from 1–3 months with a median duration of 2 months. Thus, a dengue early warning forecast given 3 months ahead of the onset of a probable epidemic would give local authorities sufficient time to mitigate an outbreak. Conclusions: Optimal timing of a dengue forecast increases the functional value of an early warning system and enhances cost-effectiveness of vector control operations in response to forecasted risks. We emphasize the importance of considering the forecast-mitigation gaps in respective study areas when developing a dengue forecasting model. Author Summary: A dengue early warning system that would provide an accurate forecast could enhance the effectiveness of dengue control, but only if it is given in sufficient time for local authorities to implement those control operations. In this study, we have suggested the optimal timing for issuing a warning of a dengue outbreak in Singapore that will allow authorities adequate time to respond. We first analyzed the relationship between the risk of dengue cases and weather predictors at 1–5 month lag times to gauge the possible lead time for providing an accurate dengue forecast. We then determined the average time needed for local authorities to curb the outbreak of clusters of 10 dengue cases or more using vector control and cluster duration records for the period 2000–2010. Increasing weekly mean temperature and cumulative rainfall preceded a rise in dengue cases up to 5 months with higher risks evident at a lag time of 3–4 months. Local authorities required an average of 2 months with a maximum of 3 months for effective control. Therefore, a dengue early warning given at least 3 months ahead of time would provide sufficient time for local authorities to moderate an outbreak.
Suggested Citation
Yien Ling Hii & Joacim Rocklöv & Stig Wall & Lee Ching Ng & Choon Siang Tang & Nawi Ng, 2012.
"Optimal Lead Time for Dengue Forecast,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 6(10), pages 1-9, October.
Handle:
RePEc:plo:pntd00:0001848
DOI: 10.1371/journal.pntd.0001848
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Jingchun Fan & Wanxia Wei & Zhenggang Bai & Chunling Fan & Shulan Li & Qiyong Liu & Kehu Yang, 2014.
"A Systematic Review and Meta-Analysis of Dengue Risk with Temperature Change,"
IJERPH, MDPI, vol. 12(1), pages 1-15, December.
- Shaowei Sang & Shaohua Gu & Peng Bi & Weizhong Yang & Zhicong Yang & Lei Xu & Jun Yang & Xiaobo Liu & Tong Jiang & Haixia Wu & Cordia Chu & Qiyong Liu, 2015.
"Predicting Unprecedented Dengue Outbreak Using Imported Cases and Climatic Factors in Guangzhou, 2014,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-12, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0001848. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.