Author
Abstract
Background: Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes. Methods & findings: Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04–1.06, per HbA1c-raising allele, p = 3 × 10−29); whereas GS-E was not (OR = 1.00, 95% CI 0.99–1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66–0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38–0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI 0.55–0.74) of African American adults with T2D to remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants. Conclusions: As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses. Ines Barroso and colleagues identify a genetic variant that leads to reduced levels of HbA1c in African American adults; 2% of this population are at risk of missed diagnosis for diabetes.Why was this study done?: What did the researchers do and find?: What do these findings mean?:
Suggested Citation
Eleanor Wheeler & Aaron Leong & Ching-Ti Liu & Marie-France Hivert & Rona J Strawbridge & Clara Podmore & Man Li & Jie Yao & Xueling Sim & Jaeyoung Hong & Audrey Y Chu & Weihua Zhang & Xu Wang & Peng , 2017.
"Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis,"
PLOS Medicine, Public Library of Science, vol. 14(9), pages 1-30, September.
Handle:
RePEc:plo:pmed00:1002383
DOI: 10.1371/journal.pmed.1002383
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Young Jin Kim & Sanghoon Moon & Mi Yeong Hwang & Sohee Han & Hye-Mi Jang & Jinhwa Kong & Dong Mun Shin & Kyungheon Yoon & Sung Min Kim & Jong-Eun Lee & Anubha Mahajan & Hyun-Young Park & Mark I. McCar, 2022.
"The contribution of common and rare genetic variants to variation in metabolic traits in 288,137 East Asians,"
Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Jennifer P. Nguyen & Timothy D. Arthur & Kyohei Fujita & Bianca M. Salgado & Margaret K. R. Donovan & Hiroko Matsui & Ji Hyun Kim & Agnieszka D’Antonio-Chronowska & Matteo D’Antonio & Kelly A. Frazer, 2023.
"eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk,"
Nature Communications, Nature, vol. 14(1), pages 1-22, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pmed00:1002383. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosmedicine (email available below). General contact details of provider: https://journals.plos.org/plosmedicine/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.