IDEAS home Printed from https://ideas.repec.org/a/plo/pmed00/1002038.html
   My bibliography  Save this article

Geographical Inequalities and Social and Environmental Risk Factors for Under-Five Mortality in Ghana in 2000 and 2010: Bayesian Spatial Analysis of Census Data

Author

Listed:
  • Raphael E Arku
  • James E Bennett
  • Marcia C Castro
  • Kofi Agyeman-Duah
  • Samilia E Mintah
  • James H Ware
  • Philomena Nyarko
  • John D Spengler
  • Samuel Agyei-Mensah
  • Majid Ezzati

Abstract

Background: Under-five mortality is declining in Ghana and many other countries. Very few studies have measured under-five mortality—and its social and environmental risk factors—at fine spatial resolutions, which is relevant for policy purposes. Our aim was to estimate under-five mortality and its social and environmental risk factors at the district level in Ghana. Methods and Findings: We used 10% random samples of Ghana’s 2000 and 2010 National Population and Housing Censuses. We applied indirect demographic methods and a Bayesian spatial model to the information on total number of children ever born and children surviving to estimate under-five mortality (probability of dying by 5 y of age, 5q0) for each of Ghana’s 110 districts. We also used the census data to estimate the distributions of households or persons in each district in terms of fuel used for cooking, sanitation facility, drinking water source, and parental education. Median district 5q0 declined from 99 deaths per 1,000 live births in 2000 to 70 in 2010. The decline ranged from 40% in southern districts, where it had been lower in 2000, exacerbating existing inequalities. Primary education increased in men and women, and more households had access to improved water and sanitation and cleaner cooking fuels. Higher use of liquefied petroleum gas for cooking was associated with lower 5q0 in multivariate analysis. Conclusions: Under-five mortality has declined in all of Ghana’s districts, but the cross-district inequality in mortality has increased. There is a need for additional data, including on healthcare, and additional environmental and socioeconomic measurements, to understand the reasons for the variations in mortality levels and trends. In a census-based study, Majid Ezzati and colleagues use demographic modeling to estimate district-level variation in under-five mortality across Ghana.Why Was This Study Done?: What Did the Researchers Do and Find?: What Do These Findings Mean?:

Suggested Citation

  • Raphael E Arku & James E Bennett & Marcia C Castro & Kofi Agyeman-Duah & Samilia E Mintah & James H Ware & Philomena Nyarko & John D Spengler & Samuel Agyei-Mensah & Majid Ezzati, 2016. "Geographical Inequalities and Social and Environmental Risk Factors for Under-Five Mortality in Ghana in 2000 and 2010: Bayesian Spatial Analysis of Census Data," PLOS Medicine, Public Library of Science, vol. 13(6), pages 1-14, June.
  • Handle: RePEc:plo:pmed00:1002038
    DOI: 10.1371/journal.pmed.1002038
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002038
    Download Restriction: no

    File URL: https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.1002038&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pmed.1002038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    2. Günther Fink & Isabel Günther & Kenneth Hill, 2014. "Slum Residence and Child Health in Developing Countries," Demography, Springer;Population Association of America (PAA), vol. 51(4), pages 1175-1197, August.
    3. Aleli D Kraft & Kim-Huong Nguyen & Eliana Jimenez-Soto & Andrew Hodge, 2013. "Stagnant Neonatal Mortality and Persistent Health Inequality in Middle-Income Countries: A Case Study of the Philippines," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katherine Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    2. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    3. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    4. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    5. Sugata Bag & Suman Seth, 2016. "Understanding Standard of Living and Correlates in Slums - An Analysis Using Monetary Versus Multidimensional Approaches in Three Indian Cities," Working papers 263, Centre for Development Economics, Delhi School of Economics.
    6. Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.
    7. Vanessa Santos-Sánchez & Juan Antonio Córdoba-Doña & Javier García-Pérez & Antonio Escolar-Pujolar & Lucia Pozzi & Rebeca Ramis, 2020. "Cancer Mortality and Deprivation in the Proximity of Polluting Industrial Facilities in an Industrial Region of Spain," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    8. Berti, Patrizia & Dreassi, Emanuela & Rigo, Pietro, 2014. "Compatibility results for conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 190-203.
    9. Louise Choo & Stephen G. Walker, 2008. "A new approach to investigating spatial variations of disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 395-405, April.
    10. Laura B. Nolan, 2015. "Slum Definitions in Urban India: Implications for the Measurement of Health Inequalities," Population and Development Review, The Population Council, Inc., vol. 41(1), pages 59-84, March.
    11. Young‐Geun Choi & Lawrence P. Hanrahan & Derek Norton & Ying‐Qi Zhao, 2022. "Simultaneous spatial smoothing and outlier detection using penalized regression, with application to childhood obesity surveillance from electronic health records," Biometrics, The International Biometric Society, vol. 78(1), pages 324-336, March.
    12. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    13. Eric C. Tassone & Marie Lynn Miranda & Alan E. Gelfand, 2010. "Disaggregated spatial modelling for areal unit categorical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 175-190, January.
    14. Junming Li & Xiulan Han & Xiao Li & Jianping Yang & Xuejiao Li, 2018. "Spatiotemporal Patterns of Ground Monitored PM 2.5 Concentrations in China in Recent Years," IJERPH, MDPI, vol. 15(1), pages 1-15, January.
    15. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    16. Dolores Catelan & Annibale Biggeri & Corrado Lagazio, 2009. "On the clustering term in ecological analysis: how do different prior specifications affect results?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 49-61, March.
    17. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    18. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    19. Shon, Huijoo, 2024. "Urbanicity and child health in 26 sub-Saharan African countries: Settlement type and its association with mortality and morbidity," Social Science & Medicine, Elsevier, vol. 340(C).
    20. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pmed00:1002038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosmedicine (email available below). General contact details of provider: https://journals.plos.org/plosmedicine/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.