IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1008198.html
   My bibliography  Save this article

Bayesian network analysis incorporating genetic anchors complements conventional Mendelian randomization approaches for exploratory analysis of causal relationships in complex data

Author

Listed:
  • Richard Howey
  • So-Youn Shin
  • Caroline Relton
  • George Davey Smith
  • Heather J Cordell

Abstract

Mendelian randomization (MR) implemented through instrumental variables analysis is an increasingly popular causal inference tool used in genetic epidemiology. But it can have limitations for evaluating simultaneous causal relationships in complex data sets that include, for example, multiple genetic predictors and multiple potential risk factors associated with the same genetic variant. Here we use real and simulated data to investigate Bayesian network analysis (BN) with the incorporation of directed arcs, representing genetic anchors, as an alternative approach. A Bayesian network describes the conditional dependencies/independencies of variables using a graphical model (a directed acyclic graph) with an accompanying joint probability. In real data, we found BN could be used to infer simultaneous causal relationships that confirmed the individual causal relationships suggested by bi-directional MR, while allowing for the existence of potential horizontal pleiotropy (that would violate MR assumptions). In simulated data, BN with two directional anchors (mimicking genetic instruments) had greater power for a fixed type 1 error than bi-directional MR, while BN with a single directional anchor performed better than or as well as bi-directional MR. Both BN and MR could be adversely affected by violations of their underlying assumptions (such as genetic confounding due to unmeasured horizontal pleiotropy). BN with no directional anchor generated inference that was no better than by chance, emphasizing the importance of directional anchors in BN (as in MR). Under highly pleiotropic simulated scenarios, BN outperformed both MR (and its recent extensions) and two recently-proposed alternative approaches: a multi-SNP mediation intersection-union test (SMUT) and a latent causal variable (LCV) test. We conclude that BN incorporating genetic anchors is a useful complementary method to conventional MR for exploring causal relationships in complex data sets such as those generated from modern “omics” technologies.Author summary: Mendelian randomization (MR) is a popular method for inferring causal relationships between variables (such as between an intermediate biological factor and a disease outcome). However, MR relies on a number of assumptions that may be hard to verify, and it is not ideally suited to comparing different underlying causal scenarios. Here we propose the use of an alternative approach, Bayesian network analysis (BN), as a complementary tool to conventional MR. We use real and simulated data to investigate the performance of MR, BN and several other recently-proposed methods, and find that BN performs as well as, or better than, the other methods, particularly under complex scenarios. We conclude that BN is a useful complementary approach to conventional MR for exploring causal relationships in complex data sets.

Suggested Citation

  • Richard Howey & So-Youn Shin & Caroline Relton & George Davey Smith & Heather J Cordell, 2020. "Bayesian network analysis incorporating genetic anchors complements conventional Mendelian randomization approaches for exploratory analysis of causal relationships in complex data," PLOS Genetics, Public Library of Science, vol. 16(3), pages 1-35, March.
  • Handle: RePEc:plo:pgen00:1008198
    DOI: 10.1371/journal.pgen.1008198
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008198
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1008198&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1008198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcus R. Munafò & George Davey Smith, 2018. "Robust research needs many lines of evidence," Nature, Nature, vol. 553(7689), pages 399-401, January.
    2. Eleonora Porcu & Sina Rüeger & Kaido Lepik & Federico A. Santoni & Alexandre Reymond & Zoltán Kutalik, 2019. "Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    4. Chen Yao & George Chen & Ci Song & Joshua Keefe & Michael Mendelson & Tianxiao Huan & Benjamin B. Sun & Annika Laser & Joseph C. Maranville & Hongsheng Wu & Jennifer E. Ho & Paul Courchesne & Asya Lya, 2018. "Genome‐wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    5. Chen Yao & George Chen & Ci Song & Joshua Keefe & Michael Mendelson & Tianxiao Huan & Benjamin B. Sun & Annika Laser & Joseph C. Maranville & Hongsheng Wu & Jennifer E. Ho & Paul Courchesne & Asya Lya, 2018. "Author Correction: Genome‐wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    6. Boettcher, Susanne G. & Dethlefsen, Claus, 2003. "deal: A Package for Learning Bayesian Networks," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 8(i20).
    7. Gibran Hemani & Kate Tilling & George Davey Smith, 2017. "Orienting the causal relationship between imprecisely measured traits using GWAS summary data," PLOS Genetics, Public Library of Science, vol. 13(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liza Darrous & Ninon Mounier & Zoltán Kutalik, 2021. "Simultaneous estimation of bi-directional causal effects and heritable confounding from GWAS summary statistics," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Haoran Xue & Wei Pan, 2020. "Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-30, November.
    3. Paula Laccourreye & Concha Bielza & Pedro Larrañaga, 2022. "Explainable Machine Learning for Longitudinal Multi-Omic Microbiome," Mathematics, MDPI, vol. 10(12), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grace Png & Andrei Barysenka & Linda Repetto & Pau Navarro & Xia Shen & Maik Pietzner & Eleanor Wheeler & Nicholas J. Wareham & Claudia Langenberg & Emmanouil Tsafantakis & Maria Karaleftheri & George, 2021. "Mapping the serum proteome to neurological diseases using whole genome sequencing," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Maik Pietzner & Eleanor Wheeler & Julia Carrasco-Zanini & Nicola D. Kerrison & Erin Oerton & Mine Koprulu & Jian’an Luan & Aroon D. Hingorani & Steve A. Williams & Nicholas J. Wareham & Claudia Langen, 2021. "Synergistic insights into human health from aptamer- and antibody-based proteomic profiling," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Robert F. Hillary & Danni A. Gadd & Zhana Kuncheva & Tasos Mangelis & Tinchi Lin & Kyle Ferber & Helen McLaughlin & Heiko Runz & Riccardo E. Marioni & Christopher N. Foley & Benjamin B. Sun, 2024. "Systematic discovery of gene-environment interactions underlying the human plasma proteome in UK Biobank," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Marie C. Sadler & Chiara Auwerx & Kaido Lepik & Eleonora Porcu & Zoltán Kutalik, 2022. "Quantifying the role of transcript levels in mediating DNA methylation effects on complex traits and diseases," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Yihao Lu & Meritxell Oliva & Brandon L. Pierce & Jin Liu & Lin S. Chen, 2024. "Integrative cross-omics and cross-context analysis elucidates molecular links underlying genetic effects on complex traits," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Dmitrii Usoltsev & Nikita Kolosov & Oxana Rotar & Alexander Loboda & Maria Boyarinova & Ekaterina Moguchaya & Ekaterina Kolesova & Anastasia Erina & Kristina Tolkunova & Valeriia Rezapova & Ivan Molot, 2024. "Complex trait susceptibilities and population diversity in a sample of 4,145 Russians," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Andrew D Bretherick & Oriol Canela-Xandri & Peter K Joshi & David W Clark & Konrad Rawlik & Thibaud S Boutin & Yanni Zeng & Carmen Amador & Pau Navarro & Igor Rudan & Alan F Wright & Harry Campbell & , 2020. "Linking protein to phenotype with Mendelian Randomization detects 38 proteins with causal roles in human diseases and traits," PLOS Genetics, Public Library of Science, vol. 16(7), pages 1-24, July.
    8. Erik Duijvelaar & Jack Gisby & James E. Peters & Harm Jan Bogaard & Jurjan Aman, 2024. "Longitudinal plasma proteomics reveals biomarkers of alveolar-capillary barrier disruption in critically ill COVID-19 patients," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Abolfazl Doostparast Torshizi & Dongnhu T. Truong & Liping Hou & Bart Smets & Christopher D. Whelan & Shuwei Li, 2024. "Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson’s disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Eamon Fitzgerald & Mojun Shen & Hannah Ee Juen Yong & Zihan Wang & Irina Pokhvisneva & Sachin Patel & Nicholas O’Toole & Shiao-Yng Chan & Yap Seng Chong & Helen Chen & Peter D. Gluckman & Jerry Chan &, 2023. "Hofbauer cell function in the term placenta associates with adult cardiovascular and depressive outcomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Andrew A. Brown & Juan J. Fernandez-Tajes & Mun-gwan Hong & Caroline A. Brorsson & Robert W. Koivula & David Davtian & Théo Dupuis & Ambra Sartori & Theodora-Dafni Michalettou & Ian M. Forgie & Jonath, 2023. "Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Roxanna Korologou-Linden & Laxmi Bhatta & Ben M. Brumpton & Laura D. Howe & Louise A. C. Millard & Katarina Kolaric & Yoav Ben-Shlomo & Dylan M. Williams & George Davey Smith & Emma L. Anderson & Evie, 2022. "The causes and consequences of Alzheimer’s disease: phenome-wide evidence from Mendelian randomization," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Jia You & Yu Guo & Yi Zhang & Ju-Jiao Kang & Lin-Bo Wang & Jian-Feng Feng & Wei Cheng & Jin-Tai Yu, 2023. "Plasma proteomic profiles predict individual future health risk," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Yordi J. Vegte & Ruben N. Eppinga & M. Yldau Ende & Yanick P. Hagemeijer & Yuvaraj Mahendran & Elias Salfati & Albert V. Smith & Vanessa Y. Tan & Dan E. Arking & Ioanna Ntalla & Emil V. Appel & Claudi, 2023. "Genetic insights into resting heart rate and its role in cardiovascular disease," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    15. Lingyan Chen & James E. Peters & Bram Prins & Elodie Persyn & Matthew Traylor & Praveen Surendran & Savita Karthikeyan & Ekaterina Yonova-Doing & Emanuele Angelantonio & David J. Roberts & Nicholas A., 2022. "Systematic Mendelian randomization using the human plasma proteome to discover potential therapeutic targets for stroke," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Matteo Di Scipio & Mohammad Khan & Shihong Mao & Michael Chong & Conor Judge & Nazia Pathan & Nicolas Perrot & Walter Nelson & Ricky Lali & Shuang Di & Robert Morton & Jeremy Petch & Guillaume Paré, 2023. "A versatile, fast and unbiased method for estimation of gene-by-environment interaction effects on biobank-scale datasets," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Jacob Joseph & Chang Liu & Qin Hui & Krishna Aragam & Zeyuan Wang & Brian Charest & Jennifer E. Huffman & Jacob M. Keaton & Todd L. Edwards & Serkalem Demissie & Luc Djousse & Juan P. Casas & J. Micha, 2022. "Genetic architecture of heart failure with preserved versus reduced ejection fraction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.