IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1008189.html
   My bibliography  Save this article

Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia

Author

Listed:
  • Guoxin Cui
  • Yi Jin Liew
  • Yong Li
  • Najeh Kharbatia
  • Noura I Zahran
  • Abdul-Hamid Emwas
  • Victor M Eguiluz
  • Manuel Aranda

Abstract

The metabolic symbiosis with photosynthetic algae allows corals to thrive in the oligotrophic environments of tropical seas. Different aspects of this relationship have been investigated using the emerging model organism Aiptasia. However, many fundamental questions, such as the nature of the symbiotic relationship and the interactions of nutrients between the partners remain highly debated. Using a meta-analysis approach, we identified a core set of 731 high-confidence symbiosis-associated genes that revealed host-dependent recycling of waste ammonium and amino acid synthesis as central processes in this relationship. Subsequent validation via metabolomic analyses confirmed that symbiont-derived carbon enables host recycling of ammonium into nonessential amino acids. We propose that this provides a regulatory mechanism to control symbiont growth through a carbon-dependent negative feedback of nitrogen availability to the symbiont. The dependence of this mechanism on symbiont-derived carbon highlights the susceptibility of this symbiosis to changes in carbon translocation, as imposed by environmental stress.Author summary: The symbiotic relationship with photosynthetic algae is key to the success of reef building corals in the nutrient poor environment of tropical waters. Extensive insight has been obtained from both physiological and “omics” level studies, yet, there are still gaps in our knowledge with respect to the metabolic interactions in this symbiotic relationship. In particular, the role of the host in nitrogen utilization and its potential link to symbiont population control still remains unclear. Using a meta-analysis approach on publicly available RNA-seq data and isotope-labeled metabolomics, we demonstrate the presence of a negative-feedback cycle in which the host uses symbiont-derived organic carbon to assimilate its own waste ammonium. This host-driven nitrogen recycling process might serve as a molecular mechanism to control symbiont densities in hospite. The dependence of this regulatory mechanism on organic carbon provided by the symbionts explains the sensitivity of this symbiotic relationship to environmental stress.

Suggested Citation

  • Guoxin Cui & Yi Jin Liew & Yong Li & Najeh Kharbatia & Noura I Zahran & Abdul-Hamid Emwas & Victor M Eguiluz & Manuel Aranda, 2019. "Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia," PLOS Genetics, Public Library of Science, vol. 15(6), pages 1-19, June.
  • Handle: RePEc:plo:pgen00:1008189
    DOI: 10.1371/journal.pgen.1008189
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008189
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1008189&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1008189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nils Rädecker & Stéphane Escrig & Jorge E. Spangenberg & Christian R. Voolstra & Anders Meibom, 2023. "Coupled carbon and nitrogen cycling regulates the cnidarian–algal symbiosis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Guoxin Cui & Jianing Mi & Alessandro Moret & Jessica Menzies & Huawen Zhong & Angus Li & Shiou-Han Hung & Salim Al-Babili & Manuel Aranda, 2023. "A carbon-nitrogen negative feedback loop underlies the repeated evolution of cnidarian–Symbiodiniaceae symbioses," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Kaare-Rasmussen, Jakob O. & Moeller, Holly V. & Pfab, Ferdinand, 2023. "Modeling food dependent symbiosis in Exaiptasia pallida," Ecological Modelling, Elsevier, vol. 481(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.