IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42582-y.html
   My bibliography  Save this article

A carbon-nitrogen negative feedback loop underlies the repeated evolution of cnidarian–Symbiodiniaceae symbioses

Author

Listed:
  • Guoxin Cui

    (King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center)

  • Jianing Mi

    (King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, the BioActives Lab, Center for Desert Agriculture
    The Second Affiliated Hospital of Guangzhou University of Chinese Medicine)

  • Alessandro Moret

    (King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center)

  • Jessica Menzies

    (King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center)

  • Huawen Zhong

    (King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center)

  • Angus Li

    (King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center)

  • Shiou-Han Hung

    (King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center)

  • Salim Al-Babili

    (King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, the BioActives Lab, Center for Desert Agriculture
    King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, the Plant Science Program)

  • Manuel Aranda

    (King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center)

Abstract

Symbiotic associations with Symbiodiniaceae have evolved independently across a diverse range of cnidarian taxa including reef-building corals, sea anemones, and jellyfish, yet the molecular mechanisms underlying their regulation and repeated evolution are still elusive. Here, we show that despite their independent evolution, cnidarian hosts use the same carbon-nitrogen negative feedback loop to control symbiont proliferation. Symbiont-derived photosynthates are used to assimilate nitrogenous waste via glutamine synthetase–glutamate synthase-mediated amino acid biosynthesis in a carbon-dependent manner, which regulates the availability of nitrogen to the symbionts. Using nutrient supplementation experiments, we show that the provision of additional carbohydrates significantly reduces symbiont density while ammonium promotes symbiont proliferation. High-resolution metabolic analysis confirmed that all hosts co-incorporated glucose-derived 13C and ammonium-derived 15N via glutamine synthetase–glutamate synthase-mediated amino acid biosynthesis. Our results reveal a general carbon-nitrogen negative feedback loop underlying these symbioses and provide a parsimonious explanation for their repeated evolution.

Suggested Citation

  • Guoxin Cui & Jianing Mi & Alessandro Moret & Jessica Menzies & Huawen Zhong & Angus Li & Shiou-Han Hung & Salim Al-Babili & Manuel Aranda, 2023. "A carbon-nitrogen negative feedback loop underlies the repeated evolution of cnidarian–Symbiodiniaceae symbioses," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42582-y
    DOI: 10.1038/s41467-023-42582-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42582-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42582-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guoxin Cui & Yi Jin Liew & Yong Li & Najeh Kharbatia & Noura I Zahran & Abdul-Hamid Emwas & Victor M Eguiluz & Manuel Aranda, 2019. "Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia," PLOS Genetics, Public Library of Science, vol. 15(6), pages 1-19, June.
    2. Tingting Xiang & Erik Lehnert & Robert E. Jinkerson & Sophie Clowez & Rick G. Kim & Jan C. DeNofrio & John R. Pringle & Arthur R. Grossman, 2020. "Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Scarinci & Jan-Luca Ariens & Georgia Angelidou & Sebastian Schmidt & Timo Glatter & Nicole Paczia & Victor Sourjik, 2024. "Enhanced metabolic entanglement emerges during the evolution of an interkingdom microbial community," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Nils Rädecker & Stéphane Escrig & Jorge E. Spangenberg & Christian R. Voolstra & Anders Meibom, 2023. "Coupled carbon and nitrogen cycling regulates the cnidarian–algal symbiosis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nils Rädecker & Stéphane Escrig & Jorge E. Spangenberg & Christian R. Voolstra & Anders Meibom, 2023. "Coupled carbon and nitrogen cycling regulates the cnidarian–algal symbiosis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Kaare-Rasmussen, Jakob O. & Moeller, Holly V. & Pfab, Ferdinand, 2023. "Modeling food dependent symbiosis in Exaiptasia pallida," Ecological Modelling, Elsevier, vol. 481(C).
    3. Dania Nanes Sarfati & Yuan Xue & Eun Sun Song & Ashley Byrne & Daniel Le & Spyros Darmanis & Stephen R. Quake & Adrien Burlacot & James Sikes & Bo Wang, 2024. "Coordinated wound responses in a regenerative animal-algal holobiont," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42582-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.