IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1006582.html
   My bibliography  Save this article

The Replisomes Remain Spatially Proximal throughout the Cell Cycle in Bacteria

Author

Listed:
  • Sarah M Mangiameli
  • Brian T Veit
  • Houra Merrikh
  • Paul A Wiggins

Abstract

The positioning of the DNA replication machinery (replisome) has been the subject of several studies. Two conflicting models for replisome localization have been proposed: In the Factory Model, sister replisomes remain spatially co-localized as the replicating DNA is translocated through a stationary replication factory. In the Track Model, sister replisomes translocate independently along a stationary DNA track and the replisomes are spatially separated for the majority of the cell cycle. Here, we used time-lapse imaging to observe and quantify the position of fluorescently labeled processivity-clamp (DnaN) complexes throughout the cell cycle in two highly-divergent bacterial model organisms: Bacillus subtilis and Escherichia coli. Because DnaN is a core component of the replication machinery, its localization patterns should be an appropriate proxy for replisome positioning in general. We present automated statistical analysis of DnaN positioning in large populations, which is essential due to the high degree of cell-to-cell variation. We find that both bacteria show remarkably similar DnaN positioning, where any potential separation of the two replication forks remains below the diffraction limit throughout the majority of the replication cycle. Additionally, the localization pattern of several other core replisome components is consistent with that of DnaN. These data altogether indicate that the two replication forks remain spatially co-localized and mostly function in close proximity throughout the replication cycle. The conservation of the observed localization patterns in these highly divergent species suggests that the subcellular positioning of the replisome is a functionally critical feature of DNA replication.Author Summary: Cell proliferation depends on efficient replication of the genome. Bacteria typically have a single origin of replication on a circular chromosome. After replication initiation, two replisomes assemble at the origin and each copy one of the two arms of the chromosome until they reach the terminus. There have been conflicting reports about the subcellular positioning and putative co-localization of the two replication forks during this process. It has remained controversial whether the two replisomes remain relatively close to each other with the DNA being pulled through, or separate as they translocate along the DNA like a track. Existing studies have relied heavily on snapshot images and these experiments cannot unambiguously distinguish between these two models: i.e. two resolvable forks versus two pairs of co-localized forks. The ability of replication to re-initiate before cell division in bacterial cells further complicates the interpretation of these types of imaging studies. In this paper, we use a combination of snapshot imaging, time-lapse imaging, and quantitative analysis to measure the fraction of time forks are co-localized during each cell cycle. We find that the forks are co-localized for the majority (80%) of the replication cycle in two highly-divergent model organisms: B. subtilis and E. coli. Our observations are consistent with proximal localization of the two forks, but also some transient separations of sister forks during replication. The conserved behavior of sub-cellular positioning of the replisomes in these two highly divergent species implies a potential functional relevance of this feature.

Suggested Citation

  • Sarah M Mangiameli & Brian T Veit & Houra Merrikh & Paul A Wiggins, 2017. "The Replisomes Remain Spatially Proximal throughout the Cell Cycle in Bacteria," PLOS Genetics, Public Library of Science, vol. 13(1), pages 1-17, January.
  • Handle: RePEc:plo:pgen00:1006582
    DOI: 10.1371/journal.pgen.1006582
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006582
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1006582&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1006582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konrad Gras & David Fange & Johan Elf, 2024. "The Escherichia coli chromosome moves to the replisome," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Janni Harju & Muriel C. F. Teeseling & Chase P. Broedersz, 2024. "Loop-extruders alter bacterial chromosome topology to direct entropic forces for segregation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Chen Zhang & Asha Mary Joseph & Laurent Casini & Justine Collier & Anjana Badrinarayanan & Suliana Manley, 2024. "Chromosome organization shapes replisome dynamics in Caulobacter crescentus," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1006582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.