Author
Listed:
- Anna Hutchinson
- Hope Watson
- Chris Wallace
Abstract
Genome Wide Association Studies (GWAS) have successfully identified thousands of loci associated with human diseases. Bayesian genetic fine-mapping studies aim to identify the specific causal variants within GWAS loci responsible for each association, reporting credible sets of plausible causal variants, which are interpreted as containing the causal variant with some “coverage probability”. Here, we use simulations to demonstrate that the coverage probabilities are over-conservative in most fine-mapping situations. We show that this is because fine-mapping data sets are not randomly selected from amongst all causal variants, but from amongst causal variants with larger effect sizes. We present a method to re-estimate the coverage of credible sets using rapid simulations based on the observed, or estimated, SNP correlation structure, we call this the “adjusted coverage estimate”. This is extended to find “adjusted credible sets”, which are the smallest set of variants such that their adjusted coverage estimate meets the target coverage. We use our method to improve the resolution of a fine-mapping study of type 1 diabetes. We found that in 27 out of 39 associated genomic regions our method could reduce the number of potentially causal variants to consider for follow-up, and found that none of the 95% or 99% credible sets required the inclusion of more variants—a pattern matched in simulations of well powered GWAS. Crucially, our method requires only GWAS summary statistics and remains accurate when SNP correlations are estimated from a large reference panel. Using our method to improve the resolution of fine-mapping studies will enable more efficient expenditure of resources in the follow-up process of annotating the variants in the credible set to determine the implicated genes and pathways in human diseases.Author summary: Pinpointing specific genetic variants within the genome that are causal for human diseases is difficult due to complex correlation patterns existing between variants. Consequently, researchers typically prioritise a set of plausible causal variants for functional validation—these sets of putative causal variants are called “credible sets”. We find that the probabilistic interpretation that these credible sets do indeed contain the true causal variant is variable, in that the reported probabilities often underestimate the true coverage of the causal variant in the credible set. We have developed a method to provide researchers with an “adjusted coverage estimate” that the true causal variant appears in the credible set, and this has been extended to find “adjusted credible sets”, allowing for more efficient allocation of resources in the expensive follow-up laboratory experiments. We used our method to reduce the number of genetic variants to consider as causal candidates for follow-up in 27 genomic regions that are associated with type 1 diabetes.
Suggested Citation
Anna Hutchinson & Hope Watson & Chris Wallace, 2020.
"Improving the coverage of credible sets in Bayesian genetic fine-mapping,"
PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-21, April.
Handle:
RePEc:plo:pcbi00:1007829
DOI: 10.1371/journal.pcbi.1007829
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007829. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.