IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1004239.html
   My bibliography  Save this article

Cancer Evolution Is Associated with Pervasive Positive Selection on Globally Expressed Genes

Author

Listed:
  • Sheli L Ostrow
  • Ruth Barshir
  • James DeGregori
  • Esti Yeger-Lotem
  • Ruth Hershberg

Abstract

Cancer is an evolutionary process in which cells acquire new transformative, proliferative and metastatic capabilities. A full understanding of cancer requires learning the dynamics of the cancer evolutionary process. We present here a large-scale analysis of the dynamics of this evolutionary process within tumors, with a focus on breast cancer. We show that the cancer evolutionary process differs greatly from organismal (germline) evolution. Organismal evolution is dominated by purifying selection (that removes mutations that are harmful to fitness). In contrast, in the cancer evolutionary process the dominance of purifying selection is much reduced, allowing for a much easier detection of the signals of positive selection (adaptation). We further show that, as a group, genes that are globally expressed across human tissues show a very strong signal of positive selection within tumors. Indeed, known cancer genes are enriched for global expression patterns. Yet, positive selection is prevalent even on globally expressed genes that have not yet been associated with cancer, suggesting that globally expressed genes are enriched for yet undiscovered cancer related functions. We find that the increased positive selection on globally expressed genes within tumors is not due to their expression in the tissue relevant to the cancer. Rather, such increased adaptation is likely due to globally expressed genes being enriched in important housekeeping and essential functions. Thus, our results suggest that tumor adaptation is most often mediated through somatic changes to those genes that are important for the most basic cellular functions. Together, our analysis reveals the uniqueness of the cancer evolutionary process and the particular importance of globally expressed genes in driving cancer initiation and progression.Author Summary: Cancer is a short-term evolutionary process that occurs within our bodies. Here, we demonstrate that the cancer evolutionary process differs greatly from other evolutionary processes. Most evolutionary processes are dominated by purifying selection (that removes harmful mutations). In contrast, in cancer evolution the dominance of purifying selection is much reduced, allowing for an easier detection of the signals of positive selection (that increases the likelihood beneficial mutations will persist). Mutations affected by positive selection within tumors are particularly interesting, as these are the mutations that allow cancer cells to acquire new capabilities important for transformation, tumor maintenance, drug resistance and metastasis. We demonstrate that, within tumors, positive selection strongly affects somatic mutations occurring within genes that are expressed globally, across all human tissues. Fitting with this, we show that genes that are already known to be involved in cancer tend to more often be globally expressed across tissues. However, even when such known cancer genes are removed from consideration, there is significantly more positive selection on the remaining globally expressed genes, suggesting that they are enriched for yet undiscovered cancer related functions. The results we present are important both for understanding cancer as an evolutionary process and to the continuing quest to identify new genes and pathways contributing to cancer.

Suggested Citation

  • Sheli L Ostrow & Ruth Barshir & James DeGregori & Esti Yeger-Lotem & Ruth Hershberg, 2014. "Cancer Evolution Is Associated with Pervasive Positive Selection on Globally Expressed Genes," PLOS Genetics, Public Library of Science, vol. 10(3), pages 1-11, March.
  • Handle: RePEc:plo:pgen00:1004239
    DOI: 10.1371/journal.pgen.1004239
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004239
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1004239&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1004239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Walter Messier & Caro-Beth Stewart, 1997. "Episodic adaptive evolution of primate lysozymes," Nature, Nature, vol. 385(6612), pages 151-154, January.
    2. Yong H Woo & Wen-Hsiung Li, 2012. "DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    3. Mel Greaves & Carlo C. Maley, 2012. "Clonal evolution in cancer," Nature, Nature, vol. 481(7381), pages 306-313, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michelle Dietzen & Haoran Zhai & Olivia Lucas & Oriol Pich & Christopher Barrington & Wei-Ting Lu & Sophia Ward & Yanping Guo & Robert E. Hynds & Simone Zaccaria & Charles Swanton & Nicholas McGranaha, 2024. "Replication timing alterations are associated with mutation acquisition during breast and lung cancer evolution," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Song Li & Wenbin Yu & Fei Xie & Haitao Luo & Zhimin Liu & Weiwei Lv & Duanbo Shi & Dexin Yu & Peng Gao & Cheng Chen & Meng Wei & Wenhao Zhou & Jiaqian Wang & Zhikun Zhao & Xin Dai & Qian Xu & Xue Zhan, 2023. "Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Jesse Kreger & Jazlyn A. Mooney & Darryl Shibata & Adam L. MacLean, 2024. "Developmental hematopoietic stem cell variation explains clonal hematopoiesis later in life," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Adam C. Weiner & Marc J. Williams & Hongyu Shi & Ignacio Vázquez-García & Sohrab Salehi & Nicole Rusk & Samuel Aparicio & Sohrab P. Shah & Andrew McPherson, 2024. "Inferring replication timing and proliferation dynamics from single-cell DNA sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Julio Diaz Caballero & Rachel M. Wheatley & Natalia Kapel & Carla López-Causapé & Thomas Van der Schalk & Angus Quinn & Liam P. Shaw & Lois Ogunlana & Claudia Recanatini & Basil Britto Xavier & Leen T, 2023. "Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Noushin Niknafs & Violeta Beleva-Guthrie & Daniel Q Naiman & Rachel Karchin, 2015. "SubClonal Hierarchy Inference from Somatic Mutations: Automatic Reconstruction of Cancer Evolutionary Trees from Multi-region Next Generation Sequencing," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-26, October.
    8. Albert H Gough & Ning Chen & Tong Ying Shun & Timothy R Lezon & Robert C Boltz & Celeste E Reese & Jacob Wagner & Lawrence A Vernetti & Jennifer R Grandis & Adrian V Lee & Andrew M Stern & Mark E Schu, 2014. "Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-16, July.
    9. Saakian, David B. & Vardanyan, Edgar & Yakushkina, Tatiana, 2020. "Evolutionary model with recombination and randomly changing fitness landscape," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    10. Ben Murrell & Joel O Wertheim & Sasha Moola & Thomas Weighill & Konrad Scheffler & Sergei L Kosakovsky Pond, 2012. "Detecting Individual Sites Subject to Episodic Diversifying Selection," PLOS Genetics, Public Library of Science, vol. 8(7), pages 1-10, July.
    11. Joseph G. Kern & Andrew M. Tilston-Lunel & Anthony Federico & Boting Ning & Amy Mueller & Grace B. Peppler & Eleni Stampouloglou & Nan Cheng & Randy L. Johnson & Marc E. Lenburg & Jennifer E. Beane & , 2022. "Inactivation of LATS1/2 drives luminal-basal plasticity to initiate basal-like mammary carcinomas," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Christopher R S Banerji & Simone Severini & Carlos Caldas & Andrew E Teschendorff, 2015. "Intra-Tumour Signalling Entropy Determines Clinical Outcome in Breast and Lung Cancer," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-23, March.
    13. Seth Haney & Jessica Konen & Adam I Marcus & Maxim Bazhenov, 2018. "The complex ecosystem in non small cell lung cancer invasion," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-21, May.
    14. Yukinari Haraoka & Yuki Akieda & Yuri Nagai & Chihiro Mogi & Tohru Ishitani, 2022. "Zebrafish imaging reveals TP53 mutation switching oncogene-induced senescence from suppressor to driver in primary tumorigenesis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Anna A Schönherz & Julie Støve Bødker & Alexander Schmitz & Rasmus Froberg Brøndum & Lasse Hjort Jakobsen & Anne Stidsholt Roug & Marianne T Severinsen & Tarec C El-Galaly & Paw Jensen & Hans Erik Joh, 2020. "Normal myeloid progenitor cell subset-associated gene signatures for acute myeloid leukaemia subtyping with prognostic impact," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-21, April.
    16. Peng V. Wu & Matt Fish & Florette K. Hazard & Chunfang Zhu & Sujay Vennam & Hannah Walton & Dhananjay Wagh & John Coller & Joanna Przybyl & Maurizio Morri & Norma Neff & Robert B. West & Roel Nusse, 2024. "A developmental biliary lineage program cooperates with Wnt activation to promote cell proliferation in hepatoblastoma," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Gal Feller & Razia Abdool Gafaar Khammissa & Raoul Ballyram & Mia-Michaela Beetge & Johan Lemmer & Liviu Feller, 2023. "Tumour Genetic Heterogeneity in Relation to Oral Squamous Cell Carcinoma and Anti-Cancer Treatment," IJERPH, MDPI, vol. 20(3), pages 1-10, January.
    18. Shravana kumar chinnikatti, 2017. "Cancer and its Genomics in Transformation Era," Cancer Therapy & Oncology International Journal, Juniper Publishers Inc., vol. 7(2), pages 25-26, September.
    19. Duy Pham & Xiao Tan & Brad Balderson & Jun Xu & Laura F. Grice & Sohye Yoon & Emily F. Willis & Minh Tran & Pui Yeng Lam & Arti Raghubar & Priyakshi Kalita-de Croft & Sunil Lakhani & Jana Vukovic & Ma, 2023. "Robust mapping of spatiotemporal trajectories and cell–cell interactions in healthy and diseased tissues," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    20. Xiaodong Liu & Ke Zhang & Neslihan A. Kaya & Zhe Jia & Dafei Wu & Tingting Chen & Zhiyuan Liu & Sinan Zhu & Axel M. Hillmer & Torsten Wuestefeld & Jin Liu & Yun Shen Chan & Zheng Hu & Liang Ma & Li Ji, 2024. "Tumor phylogeography reveals block-shaped spatial heterogeneity and the mode of evolution in Hepatocellular Carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1004239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.