IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1003362.html
   My bibliography  Save this article

Blood-Informative Transcripts Define Nine Common Axes of Peripheral Blood Gene Expression

Author

Listed:
  • Marcela Preininger
  • Dalia Arafat
  • Jinhee Kim
  • Artika P Nath
  • Youssef Idaghdour
  • Kenneth L Brigham
  • Greg Gibson

Abstract

We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB) cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as “Blood Informative Transcripts” (BITs), generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli. Author Summary: Gene expression profiling of human tissues typically reveals a complex structure of co-regulation of gene expression that has yet to be explored with regard to the genetic and environmental sources of covariance or its implications for quantitative and clinical traits. Here we show that peripheral blood samples from multiple studies can be described by nine common axes of variation that collectively explain up to one half of all transcriptional variance in blood. Specific axes diverge according to environmental variables such as lifestyle and infectious disease exposure, but a strong genetic component to axis regulation is also inferred. As few as 10 “blood-informative transcripts” (BITs) can be used to define each axis and potentially classify individuals with respect to multiple aspects of their blood and immune function. The analysis of longitudinal profiles of one individual shows how these change relative to clinical shifts in metabolic profile following viral infection. The notion that gene expression diverges along genetic paths of least resistance defined by these axes has important implications for interpreting differential expression in case-control studies of disease.

Suggested Citation

  • Marcela Preininger & Dalia Arafat & Jinhee Kim & Artika P Nath & Youssef Idaghdour & Kenneth L Brigham & Greg Gibson, 2013. "Blood-Informative Transcripts Define Nine Common Axes of Peripheral Blood Gene Expression," PLOS Genetics, Public Library of Science, vol. 9(3), pages 1-13, March.
  • Handle: RePEc:plo:pgen00:1003362
    DOI: 10.1371/journal.pgen.1003362
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003362
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1003362&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1003362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric A Stone & Julien F Ayroles, 2009. "Modulated Modularity Clustering as an Exploratory Tool for Functional Genomic Inference," PLOS Genetics, Public Library of Science, vol. 5(5), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sim, Min Kyu & Deng, Shijie & Huo, Xiaoming, 2021. "What can cluster analysis offer in investing? - Measuring structural changes in the investment universe," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 299-315.
    2. Peter Langfelder & Rui Luo & Michael C Oldham & Steve Horvath, 2011. "Is My Network Module Preserved and Reproducible?," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-29, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1003362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.