IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1002555.html
   My bibliography  Save this article

Interpreting Meta-Analyses of Genome-Wide Association Studies

Author

Listed:
  • Buhm Han
  • Eleazar Eskin

Abstract

Meta-analysis is an increasingly popular tool for combining multiple genome-wide association studies in a single analysis to identify associations with small effect sizes. The effect sizes between studies in a meta-analysis may differ and these differences, or heterogeneity, can be caused by many factors. If heterogeneity is observed in the results of a meta-analysis, interpreting the cause of heterogeneity is important because the correct interpretation can lead to a better understanding of the disease and a more effective design of a replication study. However, interpreting heterogeneous results is difficult. The standard approach of examining the association p-values of the studies does not effectively predict if the effect exists in each study. In this paper, we propose a framework facilitating the interpretation of the results of a meta-analysis. Our framework is based on a new statistic representing the posterior probability that the effect exists in each study, which is estimated utilizing cross-study information. Simulations and application to the real data show that our framework can effectively segregate the studies predicted to have an effect, the studies predicted to not have an effect, and the ambiguous studies that are underpowered. In addition to helping interpretation, the new framework also allows us to develop a new association testing procedure taking into account the existence of effect. Author Summary: Genome-wide association studies are an effective means of identifying genetic variants that are associated with diseases. Although many associated loci have been identified, those loci account for only a small fraction of the genetic contribution to the disease. The remaining contribution may be accounted by loci with very small effect sizes, so small that tens of thousands of samples are needed to identify them. Since it is costly to conduct a study collecting such a large sample, a practical alternative is to combine multiple independent studies in a single analysis called meta-analysis. However, many factors, such as genetic or environmental factors, can differ between the studies combined in a meta-analysis. These factors can cause the effect size of the causal variant to differ between the studies, a phenomenon called heterogeneity. If heterogeneity exists in the data of a meta-analysis, interpreting the meta-analysis results is an important but difficult task. In this paper, we propose a method that helps such interpretation, in addition to a new association testing procedure that is powerful when heterogeneity exists.

Suggested Citation

  • Buhm Han & Eleazar Eskin, 2012. "Interpreting Meta-Analyses of Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 8(3), pages 1-11, March.
  • Handle: RePEc:plo:pgen00:1002555
    DOI: 10.1371/journal.pgen.1002555
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002555
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1002555&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1002555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yihao Lu & Meritxell Oliva & Brandon L. Pierce & Jin Liu & Lin S. Chen, 2024. "Integrative cross-omics and cross-context analysis elucidates molecular links underlying genetic effects on complex traits," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Surina Singh & Ananyo Choudhury & Scott Hazelhurst & Nigel J. Crowther & Palwendé R. Boua & Hermann Sorgho & Godfred Agongo & Engelbert A. Nonterah & Lisa K. Micklesfield & Shane A. Norris & Isaac Kis, 2023. "Genome-wide association study meta-analysis of blood pressure traits and hypertension in sub-Saharan African populations: an AWI-Gen study," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1002555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.