IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1000686.html
   My bibliography  Save this article

A Genealogical Interpretation of Principal Components Analysis

Author

Listed:
  • Gil McVean

Abstract

Principal components analysis, PCA, is a statistical method commonly used in population genetics to identify structure in the distribution of genetic variation across geographical location and ethnic background. However, while the method is often used to inform about historical demographic processes, little is known about the relationship between fundamental demographic parameters and the projection of samples onto the primary axes. Here I show that for SNP data the projection of samples onto the principal components can be obtained directly from considering the average coalescent times between pairs of haploid genomes. The result provides a framework for interpreting PCA projections in terms of underlying processes, including migration, geographical isolation, and admixture. I also demonstrate a link between PCA and Wright's fst and show that SNP ascertainment has a largely simple and predictable effect on the projection of samples. Using examples from human genetics, I discuss the application of these results to empirical data and the implications for inference.Author Summary: Genetic variation in natural populations typically demonstrates structure arising from diverse processes including geographical isolation, founder events, migration, and admixture. One technique commonly used to uncover such structure is principal components analysis, which identifies the primary axes of variation in data and projects the samples onto these axes in a graphically appealing and intuitive manner. However, as the method is non-parametric, it can be hard to relate PCA to underlying process. Here, I show that the underlying genealogical history of the samples can be related directly to the PC projection. The result is useful because it is straightforward to predict the effects of different demographic processes on the sample genealogy. However, the result also reveals the limitations of PCA, in that multiple processes can give the same projections, it is strongly influenced by uneven sampling, and it discards important information in the spatial structure of genetic variation along chromosomes.

Suggested Citation

  • Gil McVean, 2009. "A Genealogical Interpretation of Principal Components Analysis," PLOS Genetics, Public Library of Science, vol. 5(10), pages 1-10, October.
  • Handle: RePEc:plo:pgen00:1000686
    DOI: 10.1371/journal.pgen.1000686
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000686
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1000686&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1000686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Novembre & Toby Johnson & Katarzyna Bryc & Zoltán Kutalik & Adam R. Boyko & Adam Auton & Amit Indap & Karen S. King & Sven Bergmann & Matthew R. Nelson & Matthew Stephens & Carlos D. Bustamante, 2008. "Genes mirror geography within Europe," Nature, Nature, vol. 456(7219), pages 274-274, November.
    2. John Novembre & Toby Johnson & Katarzyna Bryc & Zoltán Kutalik & Adam R. Boyko & Adam Auton & Amit Indap & Karen S. King & Sven Bergmann & Matthew R. Nelson & Matthew Stephens & Carlos D. Bustamante, 2008. "Genes mirror geography within Europe," Nature, Nature, vol. 456(7218), pages 98-101, November.
    3. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas L. Schmidt & Nancy M. Endersby-Harshman & Anthony R. J. Rooyen & Michelle Katusele & Rebecca Vinit & Leanne J. Robinson & Moses Laman & Stephan Karl & Ary A. Hoffmann, 2024. "Global, asynchronous partial sweeps at multiple insecticide resistance genes in Aedes mosquitoes," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    3. Daniel John Lawson & Garrett Hellenthal & Simon Myers & Daniel Falush, 2012. "Inference of Population Structure using Dense Haplotype Data," PLOS Genetics, Public Library of Science, vol. 8(1), pages 1-16, January.
    4. Hugh G Gauch Jr. & Sheng Qian & Hans-Peter Piepho & Linda Zhou & Rui Chen, 2019. "Consequences of PCA graphs, SNP codings, and PCA variants for elucidating population structure," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-26, June.
    5. Zheng, Xiuwen & Weir, Bruce S., 2016. "Eigenanalysis of SNP data with an identity by descent interpretation," Theoretical Population Biology, Elsevier, vol. 107(C), pages 65-76.
    6. Priya Moorjani & Nick Patterson & Joel N Hirschhorn & Alon Keinan & Li Hao & Gil Atzmon & Edward Burns & Harry Ostrer & Alkes L Price & David Reich, 2011. "The History of African Gene Flow into Southern Europeans, Levantines, and Jews," PLOS Genetics, Public Library of Science, vol. 7(4), pages 1-13, April.
    7. Yedael Y Waldman & Arjun Biddanda & Natalie R Davidson & Paul Billing-Ross & Maya Dubrovsky & Christopher L Campbell & Carole Oddoux & Eitan Friedman & Gil Atzmon & Eran Halperin & Harry Ostrer & Alon, 2016. "The Genetics of Bene Israel from India Reveals Both Substantial Jewish and Indian Ancestry," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-28, March.
    8. Wang Chaolong & Szpiech Zachary A & Degnan James H & Jakobsson Mattias & Pemberton Trevor J & Hardy John A & Singleton Andrew B & Rosenberg Noah A, 2010. "Comparing Spatial Maps of Human Population-Genetic Variation Using Procrustes Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-22, January.
    9. Xiaojun Mao & Somak Dutta & Raymond K. W. Wong & Dan Nettleton, 2020. "Adjusting for Spatial Effects in Genomic Prediction," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 699-718, December.
    10. Luca Cornetti & Peter D. Fields & Louis Du Pasquier & Dieter Ebert, 2024. "Long-term balancing selection for pathogen resistance maintains trans-species polymorphisms in a planktonic crustacean," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Zhaoming Wang & Allan Hildesheim & Sophia S Wang & Rolando Herrero & Paula Gonzalez & Laurie Burdette & Amy Hutchinson & Gilles Thomas & Stephen J Chanock & Kai Yu, 2010. "Genetic Admixture and Population Substructure in Guanacaste Costa Rica," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    12. Mofokeng, Maletsema Alina & Mashingaidze, Kingstone, 2018. "Genetic Differentiation of ARC Soybean [Glycine Max (L.) Merrill] Accessions Based on Agronomic and Nutritional Quality Traits," Agriculture and Food Sciences Research, Asian Online Journal Publishing Group, vol. 5(1), pages 6-22.
    13. Gavin Band & Quang Si Le & Luke Jostins & Matti Pirinen & Katja Kivinen & Muminatou Jallow & Fatoumatta Sisay-Joof & Kalifa Bojang & Margaret Pinder & Giorgio Sirugo & David J Conway & Vysaul Nyirongo, 2013. "Imputation-Based Meta-Analysis of Severe Malaria in Three African Populations," PLOS Genetics, Public Library of Science, vol. 9(5), pages 1-13, May.
    14. Pei-Kuan Cong & Wei-Yang Bai & Jin-Chen Li & Meng-Yuan Yang & Saber Khederzadeh & Si-Rui Gai & Nan Li & Yu-Heng Liu & Shi-Hui Yu & Wei-Wei Zhao & Jun-Quan Liu & Yi Sun & Xiao-Wei Zhu & Pian-Pian Zhao , 2022. "Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Bryc, Katarzyna & Bryc, Wlodek & Silverstein, Jack W., 2013. "Separation of the largest eigenvalues in eigenanalysis of genotype data from discrete subpopulations," Theoretical Population Biology, Elsevier, vol. 89(C), pages 34-43.
    16. Oscar Lao & Fan Liu & Andreas Wollstein & Manfred Kayser, 2014. "GAGA: A New Algorithm for Genomic Inference of Geographic Ancestry Reveals Fine Level Population Substructure in Europeans," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-11, February.
    17. Jason Sawler & Bruce Reisch & Mallikarjuna K Aradhya & Bernard Prins & Gan-Yuan Zhong & Heidi Schwaninger & Charles Simon & Edward Buckler & Sean Myles, 2013. "Genomics Assisted Ancestry Deconvolution in Grape," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    18. Duforet-Frebourg, Nicolas & Slatkin, Montgomery, 2016. "Isolation-by-distance-and-time in a stepping-stone model," Theoretical Population Biology, Elsevier, vol. 108(C), pages 24-35.
    19. Jianzhong Ma & Christopher I Amos, 2012. "Principal Components Analysis of Population Admixture," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
    20. Alexander Köhler & Marvin Kahra & Michael Breuß, 2024. "A First Approach to Quantum Logical Shape Classification Framework," Mathematics, MDPI, vol. 12(11), pages 1-21, May.
    21. Alexander Dilthey & Stephen Leslie & Loukas Moutsianas & Judong Shen & Charles Cox & Matthew R Nelson & Gil McVean, 2013. "Multi-Population Classical HLA Type Imputation," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-13, February.
    22. Ralph, Peter L., 2019. "An empirical approach to demographic inference with genomic data," Theoretical Population Biology, Elsevier, vol. 127(C), pages 91-101.
    23. Peña-Malavera Andrea & Bruno Cecilia & Fernandez Elmer & Balzarini Monica, 2014. "Comparison of algorithms to infer genetic population structure from unlinked molecular markers," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 391-402, August.
    24. Marie Louis & Petra Korlević & Milaja Nykänen & Frederick Archer & Simon Berrow & Andrew Brownlow & Eline D. Lorenzen & Joanne O’Brien & Klaas Post & Fernando Racimo & Emer Rogan & Patricia E. Rosel &, 2023. "Ancient dolphin genomes reveal rapid repeated adaptation to coastal waters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    25. Buschbom, Jutta, 2018. "Exploring and validating statistical reliability in forensic conservation genetics," Thünen Reports 63, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey V Khrunin & Denis V Khokhrin & Irina N Filippova & Tõnu Esko & Mari Nelis & Natalia A Bebyakova & Natalia L Bolotova & Janis Klovins & Liene Nikitina-Zake & Karola Rehnström & Samuli Ripatti & , 2013. "A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    2. Pierre Luisi & Angelina García & Juan Manuel Berros & Josefina M B Motti & Darío A Demarchi & Emma Alfaro & Eliana Aquilano & Carina Argüelles & Sergio Avena & Graciela Bailliet & Julieta Beltramo & C, 2020. "Fine-scale genomic analyses of admixed individuals reveal unrecognized genetic ancestry components in Argentina," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-30, July.
    3. Gad Abraham & Michael Inouye, 2014. "Fast Principal Component Analysis of Large-Scale Genome-Wide Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    4. Diana Chang & Alon Keinan, 2014. "Principal Component Analysis Characterizes Shared Pathogenetics from Genome-Wide Association Studies," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-14, September.
    5. Bryc, Katarzyna & Bryc, Wlodek & Silverstein, Jack W., 2013. "Separation of the largest eigenvalues in eigenanalysis of genotype data from discrete subpopulations," Theoretical Population Biology, Elsevier, vol. 89(C), pages 34-43.
    6. Guindon, Stéphane & Guo, Hongbin & Welch, David, 2016. "Demographic inference under the coalescent in a spatial continuum," Theoretical Population Biology, Elsevier, vol. 111(C), pages 43-50.
    7. Marie-Claude Babron & Marie de Tayrac & Douglas N Rutledge & Eleftheria Zeggini & Emmanuelle Génin, 2012. "Rare and Low Frequency Variant Stratification in the UK Population: Description and Impact on Association Tests," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    8. Priya Moorjani & Nick Patterson & Joel N Hirschhorn & Alon Keinan & Li Hao & Gil Atzmon & Edward Burns & Harry Ostrer & Alkes L Price & David Reich, 2011. "The History of African Gene Flow into Southern Europeans, Levantines, and Jews," PLOS Genetics, Public Library of Science, vol. 7(4), pages 1-13, April.
    9. Wang Chaolong & Szpiech Zachary A & Degnan James H & Jakobsson Mattias & Pemberton Trevor J & Hardy John A & Singleton Andrew B & Rosenberg Noah A, 2010. "Comparing Spatial Maps of Human Population-Genetic Variation Using Procrustes Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-22, January.
    10. Thomas Charlon & Manuel Martínez-Bueno & Lara Bossini-Castillo & F David Carmona & Alessandro Di Cara & Jérôme Wojcik & Sviatoslav Voloshynovskiy & Javier Martín & Marta E Alarcón-Riquelme, 2016. "Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-10, August.
    11. Diana Chang & Feng Gao & Andrea Slavney & Li Ma & Yedael Y Waldman & Aaron J Sams & Paul Billing-Ross & Aviv Madar & Richard Spritz & Alon Keinan, 2014. "Accounting for eXentricities: Analysis of the X Chromosome in GWAS Reveals X-Linked Genes Implicated in Autoimmune Diseases," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-31, December.
    12. Duforet-Frebourg, Nicolas & Slatkin, Montgomery, 2016. "Isolation-by-distance-and-time in a stepping-stone model," Theoretical Population Biology, Elsevier, vol. 108(C), pages 24-35.
    13. Aman Agrawal & Alec M Chiu & Minh Le & Eran Halperin & Sriram Sankararaman, 2020. "Scalable probabilistic PCA for large-scale genetic variation data," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-19, May.
    14. Thalida E Arpawong & Neil Pendleton & Krisztina Mekli & John J McArdle & Margaret Gatz & Chris Armoskus & James A Knowles & Carol A Prescott, 2017. "Genetic variants specific to aging-related verbal memory: Insights from GWASs in a population-based cohort," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-27, August.
    15. Matthieu Marbac & Mohammed Sedki & Tienne Patin, 2020. "Variable Selection for Mixed Data Clustering: Application in Human Population Genomics," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 124-142, April.
    16. Isabel Alves & Joanna Giemza & Michael G. B. Blum & Carolina Bernhardsson & Stéphanie Chatel & Matilde Karakachoff & Aude Pierre & Anthony F. Herzig & Robert Olaso & Martial Monteil & Véronique Gallie, 2024. "Human genetic structure in Northwest France provides new insights into West European historical demography," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Zheng, Xiuwen & Weir, Bruce S., 2016. "Eigenanalysis of SNP data with an identity by descent interpretation," Theoretical Population Biology, Elsevier, vol. 107(C), pages 65-76.
    18. Jason Sawler & Bruce Reisch & Mallikarjuna K Aradhya & Bernard Prins & Gan-Yuan Zhong & Heidi Schwaninger & Charles Simon & Edward Buckler & Sean Myles, 2013. "Genomics Assisted Ancestry Deconvolution in Grape," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    19. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Beatrix Eugster & Rafael Lalive & Andreas Steinhauer & Josef Zweimüller, 2011. "The Demand for Social Insurance: Does Culture Matter?," Economic Journal, Royal Economic Society, vol. 121(556), pages 413-448, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1000686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.