IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1000545.html
   My bibliography  Save this article

Enhanced Disease Susceptibility 1 and Salicylic Acid Act Redundantly to Regulate Resistance Gene-Mediated Signaling

Author

Listed:
  • Srivathsa C Venugopal
  • Rae-Dong Jeong
  • Mihir K Mandal
  • Shifeng Zhu
  • A C Chandra-Shekara
  • Ye Xia
  • Matthew Hersh
  • Arnold J Stromberg
  • DuRoy Navarre
  • Aardra Kachroo
  • Pradeep Kachroo

Abstract

Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA–synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.Author Summary: Salicylic acid and enhanced disease susceptibility 1 are important components of resistance gene-mediated defense signaling against diverse pathogens in a variety of plants. Present understanding of plant defense signaling pathways places salicylic acid and enhanced disease susceptibility 1 downstream of resistant protein activation. In addition, enhanced disease susceptibility 1 is primarily thought to function in the signaling initiated via Toll-interleukin 1-receptor type of resistance proteins. Here, we show that salicylic acid and enhanced disease susceptibility 1 serve redundant functions in defense signaling mediated by coiled-coil-domain containing resistance proteins that were thought to function independent of enhanced disease susceptibility 1. Furthermore, resistance signaling induced under low oleic acid conditions also requires enhanced disease susceptibility 1 and salicylic acid in a redundant manner, but these components are required upstream of resistance gene expression. Together, these results show that the functional redundancy between salicylic acid and enhanced disease susceptibility 1 has precluded their detection as required components of many resistance protein–signaling pathways.

Suggested Citation

  • Srivathsa C Venugopal & Rae-Dong Jeong & Mihir K Mandal & Shifeng Zhu & A C Chandra-Shekara & Ye Xia & Matthew Hersh & Arnold J Stromberg & DuRoy Navarre & Aardra Kachroo & Pradeep Kachroo, 2009. "Enhanced Disease Susceptibility 1 and Salicylic Acid Act Redundantly to Regulate Resistance Gene-Mediated Signaling," PLOS Genetics, Public Library of Science, vol. 5(7), pages 1-18, July.
  • Handle: RePEc:plo:pgen00:1000545
    DOI: 10.1371/journal.pgen.1000545
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000545
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1000545&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1000545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oumaya Bouchabke & Fengqi Chang & Matthieu Simon & Roger Voisin & Georges Pelletier & Mylène Durand-Tardif, 2008. "Natural Variation in Arabidopsis thaliana as a Tool for Highlighting Differential Drought Responses," PLOS ONE, Public Library of Science, vol. 3(2), pages 1-8, February.
    2. Mary C. Wildermuth & Julia Dewdney & Gang Wu & Frederick M. Ausubel, 2001. "Isochorismate synthase is required to synthesize salicylic acid for plant defence," Nature, Nature, vol. 414(6863), pages 562-565, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiffany L. Fess & James B. Kotcon & Vagner A. Benedito, 2011. "Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population," Sustainability, MDPI, vol. 3(10), pages 1-31, October.
    2. Conner J. Rogan & Yin-Yuin Pang & Sophie D. Mathews & Sydney E. Turner & Alexandra J. Weisberg & Silke Lehmann & Doris Rentsch & Jeffrey C. Anderson, 2024. "Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Deepak D. Bhandari & Dae Kwan Ko & Sang-Jin Kim & Kinya Nomura & Sheng Yang He & Federica Brandizzi, 2023. "Defense against phytopathogens relies on efficient antimicrobial protein secretion mediated by the microtubule-binding protein TGNap1," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Muhammad Awais Zahid & Nam Phuong Kieu & Frida Meijer Carlsen & Marit Lenman & Naga Charan Konakalla & Huanjie Yang & Sunmoon Jyakhwa & Jozef Mravec & Ramesh Vetukuri & Bent Larsen Petersen & Svante R, 2024. "Enhanced stress resilience in potato by deletion of Parakletos," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Ameneh Asadi-Sardari & Esmat Mahdikhani-Moghadam & Mohammad Zaki-Aghl & Ramesh Raju Vetukuri, 2022. "Constitutive and Inducible Expression of Genes Related to Salicylic Acid and Ethylene Pathways in a Moderately Resistant Tomato Cultivar Leads to Delayed Development of Meloidogyne javanica," Agriculture, MDPI, vol. 12(12), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1000545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.