IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1000279.html
   My bibliography  Save this article

Practical Issues in Imputation-Based Association Mapping

Author

Listed:
  • Yongtao Guan
  • Matthew Stephens

Abstract

Imputation-based association methods provide a powerful framework for testing untyped variants for association with phenotypes and for combining results from multiple studies that use different genotyping platforms. Here, we consider several issues that arise when applying these methods in practice, including: (i) factors affecting imputation accuracy, including choice of reference panel; (ii) the effects of imputation accuracy on power to detect associations; (iii) the relative merits of Bayesian and frequentist approaches to testing imputed genotypes for association with phenotype; and (iv) how to quickly and accurately compute Bayes factors for testing imputed SNPs. We find that imputation-based methods can be robust to imputation accuracy and can improve power to detect associations, even when average imputation accuracy is poor. We explain how ranking SNPs for association by a standard likelihood ratio test gives the same results as a Bayesian procedure that uses an unnatural prior assumption—specifically, that difficult-to-impute SNPs tend to have larger effects—and assess the power gained from using a Bayesian approach that does not make this assumption. Within the Bayesian framework, we find that good approximations to a full analysis can be achieved by simply replacing unknown genotypes with a point estimate—their posterior mean. This approximation considerably reduces computational expense compared with published sampling-based approaches, and the methods we present are practical on a genome-wide scale with very modest computational resources (e.g., a single desktop computer). The approximation also facilitates combining information across studies, using only summary data for each SNP. Methods discussed here are implemented in the software package BIMBAM, which is available from http://stephenslab.uchicago.edu/software.html.Author Summary: Genotype imputation is becoming a popular approach to comparing and combining results of multiple association studies that used different SNP genotyping platforms. The basic idea is to exploit the fact that, due to correlation among untyped and typed SNPs, genotypes of untyped SNPs in each study can be inferred (“imputed”) from the genotypes at typed SNPs, often with high accuracy. In this paper, we consider several issues that arise when applying these methods in practice, including factors affecting imputation accuracy, the importance of taking account of imputation uncertainty when testing for association between imputed SNPs and phenotype, how imputation accuracy affects power, and how to combine results across studies when only single-SNP summary data can be shared among research groups.

Suggested Citation

  • Yongtao Guan & Matthew Stephens, 2008. "Practical Issues in Imputation-Based Association Mapping," PLOS Genetics, Public Library of Science, vol. 4(12), pages 1-11, December.
  • Handle: RePEc:plo:pgen00:1000279
    DOI: 10.1371/journal.pgen.1000279
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000279
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1000279&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1000279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul T Williams, 2012. "Quantile-Specific Penetrance of Genes Affecting Lipoproteins, Adiposity and Height," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-8, January.
    2. Huang, Lucy & Buzbas, Erkan O. & Rosenberg, Noah A., 2013. "Genotype imputation in a coalescent model with infinitely-many-sites mutation," Theoretical Population Biology, Elsevier, vol. 87(C), pages 62-74.
    3. Mathew J Barber & Lara M Mangravite & Craig L Hyde & Daniel I Chasman & Joshua D Smith & Catherine A McCarty & Xiaohui Li & Russell A Wilke & Mark J Rieder & Paul T Williams & Paul M Ridker & Aurobind, 2010. "Genome-Wide Association of Lipid-Lowering Response to Statins in Combined Study Populations," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-10, March.
    4. Jason Flannick & Joshua M Korn & Pierre Fontanillas & George B Grant & Eric Banks & Mark A Depristo & David Altshuler, 2012. "Efficiency and Power as a Function of Sequence Coverage, SNP Array Density, and Imputation," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-13, July.
    5. Weihua Shou & Dazhi Wang & Kaiyue Zhang & Beilan Wang & Zhimin Wang & Jinxiu Shi & Wei Huang, 2012. "Gene-Wide Characterization of Common Quantitative Trait Loci for ABCB1 mRNA Expression in Normal Liver Tissues in the Chinese Population," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    6. Joshua C Randall & Thomas W Winkler & Zoltán Kutalik & Sonja I Berndt & Anne U Jackson & Keri L Monda & Tuomas O Kilpeläinen & Tõnu Esko & Reedik Mägi & Shengxu Li & Tsegaselassie Workalemahu & Mary F, 2013. "Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits," PLOS Genetics, Public Library of Science, vol. 9(6), pages 1-19, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1000279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.