IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008528.html
   My bibliography  Save this article

Genome-scale metabolic modelling when changes in environmental conditions affect biomass composition

Author

Listed:
  • Christian Schulz
  • Tjasa Kumelj
  • Emil Karlsen
  • Eivind Almaas

Abstract

Genome-scale metabolic modeling is an important tool in the study of metabolism by enhancing the collation of knowledge, interpretation of data, and prediction of metabolic capabilities. A frequent assumption in the use of genome-scale models is that the in vivo organism is evolved for optimal growth, where growth is represented by flux through a biomass objective function (BOF). While the specific composition of the BOF is crucial, its formulation is often inherited from similar organisms due to the experimental challenges associated with its proper determination.A cell’s macro-molecular composition is not fixed and it responds to changes in environmental conditions. As a consequence, initiatives for the high-fidelity determination of cellular biomass composition have been launched. Thus, there is a need for a mathematical and computational framework capable of using multiple measurements of cellular biomass composition in different environments. Here, we propose two different computational approaches for directly addressing this challenge: Biomass Trade-off Weighting (BTW) and Higher-dimensional-plane InterPolation (HIP).In lieu of experimental data on biomass composition-variation in response to changing nutrient environment, we assess the properties of BTW and HIP using three hypothetical, yet biologically plausible, BOFs for the Escherichia coli genome-scale metabolic model iML1515. We find that the BTW and HIP formulations have a significant impact on model performance and phenotypes. Furthermore, the BTW method generates larger growth rates in all environments when compared to HIP. Using acetate secretion and the respiratory quotient as proxies for phenotypic changes, we find marked differences between the methods as HIP generates BOFs more similar to a reference BOF than BTW. We conclude that the presented methods constitute a conceptual step in developing genome-scale metabolic modelling approaches capable of addressing the inherent dependence of cellular biomass composition on nutrient environments.Author summary: Changes in the environment promote changes in an organism’s metabolism. To achieve balanced growth states for near-optimal function, cells respond through metabolic rearrangements, which may influence the biosynthesis of metabolic precursors for building a cell’s molecular constituents. Therefore, it is necessary to take the dependence of biomass composition on environmental conditions into consideration. While measuring the biomass composition for some environments is possible, and should be done, it cannot be completed for all possible environments.

Suggested Citation

  • Christian Schulz & Tjasa Kumelj & Emil Karlsen & Eivind Almaas, 2021. "Genome-scale metabolic modelling when changes in environmental conditions affect biomass composition," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-22, May.
  • Handle: RePEc:plo:pcbi00:1008528
    DOI: 10.1371/journal.pcbi.1008528
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008528
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008528&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua A. Lerman & Daniel R. Hyduke & Haythem Latif & Vasiliy A. Portnoy & Nathan E. Lewis & Jeffrey D. Orth & Alexandra C. Schrimpe-Rutledge & Richard D. Smith & Joshua N. Adkins & Karsten Zengler & , 2012. "In silico method for modelling metabolism and gene product expression at genome scale," Nature Communications, Nature, vol. 3(1), pages 1-10, January.
    2. Markus Basan & Sheng Hui & Hiroyuki Okano & Zhongge Zhang & Yang Shen & James R. Williamson & Terence Hwa, 2015. "Overflow metabolism in Escherichia coli results from efficient proteome allocation," Nature, Nature, vol. 528(7580), pages 99-104, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joe J. Lim & Christian Diener & James Wilson & Jacob J. Valenzuela & Nitin S. Baliga & Sean M. Gibbons, 2023. "Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Planqué & Josephus Hulshof & Bas Teusink & Johannes C Hendriks & Frank J Bruggeman, 2018. "Maintaining maximal metabolic flux by gene expression control," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-20, September.
    2. Manlu Zhu & Yiheng Wang & Haoyan Mu & Fei Han & Qian Wang & Yongfu Pei & Xin Wang & Xiongfeng Dai, 2024. "Plasmid-encoded phosphatase RapP enhances cell growth in non-domesticated Bacillus subtilis strains," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Hao Leng & Yinzhao Wang & Weishu Zhao & Stefan M. Sievert & Xiang Xiao, 2023. "Identification of a deep-branching thermophilic clade sheds light on early bacterial evolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Marcelo Rivas-Astroza & Raúl Conejeros, 2020. "Metabolic flux configuration determination using information entropy," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-19, December.
    5. Ambros M. Gleixner & Daniel E. Steffy & Kati Wolter, 2016. "Iterative Refinement for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 449-464, August.
    6. Alexander Kroll & Yvan Rousset & Xiao-Pan Hu & Nina A. Liebrand & Martin J. Lercher, 2023. "Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Iván Domenzain & Benjamín Sánchez & Mihail Anton & Eduard J. Kerkhoven & Aarón Millán-Oropeza & Céline Henry & Verena Siewers & John P. Morrissey & Nikolaus Sonnenschein & Jens Nielsen, 2022. "Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Guido Zampieri & Supreeta Vijayakumar & Elisabeth Yaneske & Claudio Angione, 2019. "Machine and deep learning meet genome-scale metabolic modeling," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-24, July.
    9. Philipp Wendering & Marius Arend & Zahra Razaghi-Moghadam & Zoran Nikoloski, 2023. "Data integration across conditions improves turnover number estimates and metabolic predictions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.