Author
Listed:
- André Scholich
- Simon Syga
- Hernán Morales-Navarrete
- Fabián Segovia-Miranda
- Hidenori Nonaka
- Kirstin Meyer
- Walter de Back
- Lutz Brusch
- Yannis Kalaidzidis
- Marino Zerial
- Frank Jülicher
- Benjamin M Friedrich
Abstract
How epithelial cells coordinate their polarity to form functional tissues is an open question in cell biology. Here, we characterize a unique type of polarity found in liver tissue, nematic cell polarity, which is different from vectorial cell polarity in simple, sheet-like epithelia. We propose a conceptual and algorithmic framework to characterize complex patterns of polarity proteins on the surface of a cell in terms of a multipole expansion. To rigorously quantify previously observed tissue-level patterns of nematic cell polarity (Morales-Navarrete et al., eLife 2019), we introduce the concept of co-orientational order parameters, which generalize the known biaxial order parameters of the theory of liquid crystals. Applying these concepts to three-dimensional reconstructions of single cells from high-resolution imaging data of mouse liver tissue, we show that the axes of nematic cell polarity of hepatocytes exhibit local coordination and are aligned with the biaxially anisotropic sinusoidal network for blood transport. Our study characterizes liver tissue as a biological example of a biaxial liquid crystal. The general methodology developed here could be applied to other tissues and in-vitro organoids.Author summary: Cell polarity enables cells to carry out specific functions. Cell polarity is characterized by the formation of different plasma membrane domains, each with specific composition of proteins, phospholipids and cytoskeletal components. In simple epithelial sheets, or tube-like tissues such as kidney, epithelial cells are known to display a single apical domain, facing a lumenal cavity, and a single basal domain on the opposite side of the cell, facing a basal layer of extracellular matrix. This apico-basal polarity defines a vector of cell polarity, which provides a direction of fluid transport, e.g., from the basal side of the sheet to the lumen-facing side. In more complex, three-dimensional epithelial tissues, such as liver tissue with its complex network of blood-transporting sinusoids, the membrane domains of hepatocyte cells display more intricate patterns, including rings and antipodal pairs of apical membrane. Here, we develop a mathematical framework to precisely characterize and quantify complex polarity patterns. Thereby, we reveal ordered patterns of cell polarity that span across a liver lobule. Our new method builds on physical concepts originally developed for ordered phases of liquid crystals. It provides a versatile tool to characterize the spatial organization of a complex three-dimensional tissue.
Suggested Citation
André Scholich & Simon Syga & Hernán Morales-Navarrete & Fabián Segovia-Miranda & Hidenori Nonaka & Kirstin Meyer & Walter de Back & Lutz Brusch & Yannis Kalaidzidis & Marino Zerial & Frank Jülicher &, 2020.
"Quantification of nematic cell polarity in three-dimensional tissues,"
PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-22, December.
Handle:
RePEc:plo:pcbi00:1008412
DOI: 10.1371/journal.pcbi.1008412
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
- Jens Karschau & André Scholich & Jonathan Wise & Hernán Morales-Navarrete & Yannis Kalaidzidis & Marino Zerial & Benjamin M Friedrich, 2020.
"Resilience of three-dimensional sinusoidal networks in liver tissue,"
PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-22, June.
- Ronald Springer & Alexander Zielinski & Catharina Pleschka & Bernd Hoffmann & Rudolf Merkel, 2019.
"Unbiased pattern analysis reveals highly diverse responses of cytoskeletal systems to cyclic straining,"
PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008412. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.