Author
Listed:
- Quynh-Anh Nguyen
- John Rinzel
- Rodica Curtu
Abstract
A repeating triplet-sequence ABA− of non-overlapping brief tones, A and B, is a valued paradigm for studying auditory stream formation and the cocktail party problem. The stimulus is “heard” either as a galloping pattern (integration) or as two interleaved streams (segregation); the initial percept is typically integration then followed by spontaneous alternations between segregation and integration, each being dominant for a few seconds. The probability of segregation grows over seconds, from near-zero to a steady value, defining the buildup function, BUF. Its stationary level increases with the difference in tone frequencies, DF, and the BUF rises faster. Percept durations have DF-dependent means and are gamma-like distributed. Behavioral and computational studies usually characterize triplet streaming either during alternations or during buildup. Here, our experimental design and modeling encompass both. We propose a pseudo-neuromechanistic model that incorporates spiking activity in primary auditory cortex, A1, as input and resolves perception along two network-layers downstream of A1. Our model is straightforward and intuitive. It describes the noisy accumulation of evidence against the current percept which generates switches when reaching a threshold. Accumulation can saturate either above or below threshold; if below, the switching dynamics resemble noise-induced transitions from an attractor state. Our model accounts quantitatively for three key features of data: the BUFs, mean durations, and normalized dominance duration distributions, at various DF values. It describes perceptual alternations without competition per se, and underscores that treating triplets in the sequence independently and averaging across trials, as implemented in earlier widely cited studies, is inadequate.Author summary: Segregation of auditory objects (auditory streaming) is widely studied using ambiguous stimuli. A sequence of repeating triplets ABA− of non-overlapping brief pure tones, A and B, frequency-separated, is a valued stimulus. Studies typically focus on one of two behavioral phases: the early (say, ten seconds) buildup of segregation from the default integration or later spontaneous alternations (bistability) between seconds-long integration and segregation percepts. Our experiments and modeling encompass both. Our novel, data-driven, evidence-accumulation model accounts for key features of the observations, taking as input recorded spiking activity from primary auditory cortex (as opposed to most existing, more abstract, models). Our results underscore that assessing individual triplets independently and averaging across trials, as in some earlier studies, is inadequate (lacking neuronal-accountability for percept duration statistics, the underlying basis of buildup). Further, we identify fresh parallels between evidence accumulation and competition as potential dynamic processes for choice in the brain.
Suggested Citation
Quynh-Anh Nguyen & John Rinzel & Rodica Curtu, 2020.
"Buildup and bistability in auditory streaming as an evidence accumulation process with saturation,"
PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-34, August.
Handle:
RePEc:plo:pcbi00:1008152
DOI: 10.1371/journal.pcbi.1008152
Download full text from publisher
References listed on IDEAS
- Dana Barniv & Israel Nelken, 2015.
"Auditory Streaming as an Online Classification Process with Evidence Accumulation,"
PLOS ONE, Public Library of Science, vol. 10(12), pages 1-20, December.
- James Rankin & Elyse Sussman & John Rinzel, 2015.
"Neuromechanistic Model of Auditory Bistability,"
PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-34, November.
Full references (including those not matched with items on IDEAS)
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008152. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.