IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004555.html
   My bibliography  Save this article

Neuromechanistic Model of Auditory Bistability

Author

Listed:
  • James Rankin
  • Elyse Sussman
  • John Rinzel

Abstract

Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1). Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept—a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition.Author Summary: Humans have an astonishing ability to separate out different sound sources in a busy room: think of how we can hear individual voices in a bustling coffee shop. Rather than voices, we use sound stimuli in the lab: repeating patterns of high and low tones. The tone sequences are ambiguous and can be interpreted in different ways—either grouped into a single stream, or separated out into different streams. When listening for a long time, one’s perception switches every few seconds, a phenomenon called auditory bistability. Based on knowledge of the organization of brain areas involved in separating out different sound sources and how neurons in these areas respond to the ambiguous sequences, we developed a computational model of auditory bistabilty. Our model is less abstract than existing models and shows how groups of neurons may compete in order to dictate what you perceive. We predict how the difference between the two tone sequences affects what you hear over time and we performed an experiment with human listeners to confirm our prediction. The model provides groundwork to further explore the way the brain deals with the busy and often ambiguous world of sound.

Suggested Citation

  • James Rankin & Elyse Sussman & John Rinzel, 2015. "Neuromechanistic Model of Auditory Bistability," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-34, November.
  • Handle: RePEc:plo:pcbi00:1004555
    DOI: 10.1371/journal.pcbi.1004555
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004555
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004555&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quynh-Anh Nguyen & John Rinzel & Rodica Curtu, 2020. "Buildup and bistability in auditory streaming as an evidence accumulation process with saturation," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-34, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.