IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008037.html
   My bibliography  Save this article

Optimising efficacy of antibiotics against systemic infection by varying dosage quantities and times

Author

Listed:
  • Andy Hoyle
  • David Cairns
  • Iona Paterson
  • Stuart McMillan
  • Gabriela Ochoa
  • Andrew P Desbois

Abstract

Mass production and use of antibiotics has led to the rise of resistant bacteria, a problem possibly exacerbated by inappropriate and non-optimal application. Antibiotic treatment often follows fixed-dose regimens, with a standard dose of antibiotic administered equally spaced in time. But are such fixed-dose regimens optimal or can alternative regimens be designed to increase efficacy? Yet, few mathematical models have aimed to identify optimal treatments based on biological data of infections inside a living host. In addition, assumptions to make the mathematical models analytically tractable limit the search space of possible treatment regimens (e.g. to fixed-dose treatments). Here, we aimed to address these limitations by using experiments in a Galleria mellonella (insect) model of bacterial infection to create a fully parametrised mathematical model of a systemic Vibrio infection. We successfully validated this model with biological experiments, including treatments unseen by the mathematical model. Then, by applying artificial intelligence, this model was used to determine optimal antibiotic dosage regimens to treat the host to maximise survival while minimising total antibiotic used. As expected, host survival increased as total quantity of antibiotic applied during the course of treatment increased. However, many of the optimal regimens tended to follow a large initial ‘loading’ dose followed by doses of incremental reductions in antibiotic quantity (dose ‘tapering’). Moreover, application of the entire antibiotic in a single dose at the start of treatment was never optimal, except when the total quantity of antibiotic was very low. Importantly, the range of optimal regimens identified was broad enough to allow the antibiotic prescriber to choose a regimen based on additional criteria or preferences. Our findings demonstrate the utility of an insect host to model antibiotic therapies in vivo and the approach lays a foundation for future regimen optimisation for patient and societal benefits.Author summary: Research into optimal antibiotic use to improve efficacy is far behind that of cancer care, where personalised treatment is common. The integration of mathematical models with biological observations offers hope to optimise antibiotic use, and in this present study an in vivo insect model of systemic Vibrio infection was used for the first time to determine critical model parameters for optimal antibiotic treatment. By this approach, the optimal regimens tended to result from a large initial ‘loading’ dose followed by subsequent doses of incremental reductions in antibiotic quantity (dose ‘tapering’). The approach and findings of this study opens a new avenue towards optimal application of our precious antibiotic arsenal and may lead to more effective treatment regimens for patients, thus reducing the health and economic burdens associated with bacterial infections. Importantly, it can be argued that until we understand how to use a single antibiotic optimally, it is unlikely we will identify optimal ways to use multiple antibiotics simultaneously.

Suggested Citation

  • Andy Hoyle & David Cairns & Iona Paterson & Stuart McMillan & Gabriela Ochoa & Andrew P Desbois, 2020. "Optimising efficacy of antibiotics against systemic infection by varying dosage quantities and times," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-20, August.
  • Handle: RePEc:plo:pcbi00:1008037
    DOI: 10.1371/journal.pcbi.1008037
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008037
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008037&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason Karslake & Jeff Maltas & Peter Brumm & Kevin B Wood, 2016. "Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsa Hansen & Jason Karslake & Robert J Woods & Andrew F Read & Kevin B Wood, 2020. "Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.
    2. Jeff Maltas & Kevin B Wood, 2019. "Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-34, October.
    3. Neythen J Treloar & Alex J H Fedorec & Brian Ingalls & Chris P Barnes, 2020. "Deep reinforcement learning for the control of microbial co-cultures in bioreactors," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.