IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007452.html
   My bibliography  Save this article

Learning from animals: How to Navigate Complex Terrains

Author

Listed:
  • Henghui Zhu
  • Hao Liu
  • Armin Ataei
  • Yonatan Munk
  • Thomas Daniel
  • Ioannis Ch Paschalidis

Abstract

We develop a method to learn a bio-inspired motion control policy using data collected from hawkmoths navigating in a virtual forest. A Markov Decision Process (MDP) framework is introduced to model the dynamics of moths and sparse logistic regression is used to learn control policy parameters from the data. The results show that moths do not favor detailed obstacle location information in navigation, but rely heavily on optical flow. Using the policy learned from the moth data as a starting point, we propose an actor-critic learning algorithm to refine policy parameters and obtain a policy that can be used by an autonomous aerial vehicle operating in a cluttered environment. Compared with the moths’ policy, the policy we obtain integrates both obstacle location and optical flow. We compare the performance of these two policies in terms of their ability to navigate in artificial forest areas. While the optimized policy can adjust its parameters to outperform the moth’s policy in each different terrain, the moth’s policy exhibits a high level of robustness across terrains.Author summary: Many animals exhibit a remarkable ability to navigate in complex forest terrains. Can we learn their navigation strategy from observed flying trajectories? Further, can we refine these strategies to design UAV/drone navigation policies in dense cluttered terrains? To that end, we propose a method to analyze data from hawkmoth flight trajectories in a closed-loop virtual forest and extract the navigation control policy. We find that moths rely heavily on optical flow rather than detailed information on the location of obstacles around them. We also develop a method to refine the hawkmoth control policy to be used by autonomous aerial vehicles in a cluttered environment. We find that integrating both obstacle location information and optical flow improves navigation performance.

Suggested Citation

  • Henghui Zhu & Hao Liu & Armin Ataei & Yonatan Munk & Thomas Daniel & Ioannis Ch Paschalidis, 2020. "Learning from animals: How to Navigate Complex Terrains," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-17, January.
  • Handle: RePEc:plo:pcbi00:1007452
    DOI: 10.1371/journal.pcbi.1007452
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007452
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007452&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reza Moazzez Estanjini & Keyong Li & Ioannis Ch. Paschalidis, 2012. "A least squares temporal difference actor–critic algorithm with applications to warehouse management," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 197-211, April.
    2. Olivier J N Bertrand & Jens P Lindemann & Martin Egelhaaf, 2015. "A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-28, November.
    3. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Wu, Jiansong & Zhang, Linlin & Bai, Yiping & Reniers, Genserik, 2022. "A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    5. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    6. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    7. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    8. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    9. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    10. Yinhe Bu & Xingping Zhang, 2021. "On the Way to Integrate Increasing Shares of Variable Renewables in China: Experience from Flexibility Modification and Deep Peak Regulation Ancillary Service Market Based on MILP-UC Programming," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    11. Donovin D. Lewis & Aron Patrick & Evan S. Jones & Rosemary E. Alden & Abdullah Al Hadi & Malcolm D. McCulloch & Dan M. Ionel, 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study," Energies, MDPI, vol. 16(4), pages 1-23, February.
    12. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    13. Xu, Jie & Lv, Tao & Hou, Xiaoran & Deng, Xu & Liu, Feng, 2021. "Provincial allocation of renewable portfolio standard in China based on efficiency and fairness principles," Renewable Energy, Elsevier, vol. 179(C), pages 1233-1245.
    14. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    15. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    16. Ming Zhang & Qianwen Huang & Sihan Liu & Huiying Li, 2019. "Multi-Objective Optimization of Aircraft Taxiing on the Airport Surface with Consideration to Taxiing Conflicts and the Airport Environment," Sustainability, MDPI, vol. 11(23), pages 1-27, November.
    17. Ruidi Chen & Ioannis Ch. Paschalidis, 2022. "Robust Grouped Variable Selection Using Distributionally Robust Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1042-1071, September.
    18. Darya Pyatkina & Tamara Shcherbina & Vadim Samusenkov & Irina Razinkina & Mariusz Sroka, 2021. "Modeling and Management of Power Supply Enterprises’ Cash Flows," Energies, MDPI, vol. 14(4), pages 1-17, February.
    19. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    20. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.