IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007230.html
   My bibliography  Save this article

FAMoS: A Flexible and dynamic Algorithm for Model Selection to analyse complex systems dynamics

Author

Listed:
  • Michael Gabel
  • Tobias Hohl
  • Andrea Imle
  • Oliver T Fackler
  • Frederik Graw

Abstract

Most biological systems are difficult to analyse due to a multitude of interacting components and the concomitant lack of information about the essential dynamics. Finding appropriate models that provide a systematic description of such biological systems and that help to identify their relevant factors and processes can be challenging given the sheer number of possibilities. Model selection algorithms that evaluate the performance of a multitude of different models against experimental data provide a useful tool to identify appropriate model structures. However, many algorithms addressing the analysis of complex dynamical systems, as they are often used in biology, compare a preselected number of models or rely on exhaustive searches of the total model space which might be unfeasible dependent on the number of possibilities. Therefore, we developed an algorithm that is able to perform model selection on complex systems and searches large model spaces in a dynamical way. Our algorithm includes local and newly developed non-local search methods that can prevent the algorithm from ending up in local minima of the model space by accounting for structurally similar processes. We tested and validated the algorithm based on simulated data and showed its flexibility for handling different model structures. We also used the algorithm to analyse experimental data on the cell proliferation dynamics of CD4+ and CD8+ T cells that were cultured under different conditions. Our analyses indicated dynamical changes within the proliferation potential of cells that was reduced within tissue-like 3D ex vivo cultures compared to suspension. Due to the flexibility in handling various model structures, the algorithm is applicable to a large variety of different biological problems and represents a useful tool for the data-oriented evaluation of complex model spaces.Author summary: Identifying the systematic interactions of multiple components within a complex biological system can be challenging due to the number of potential processes and the concomitant lack of information about the essential dynamics. Selection algorithms that allow an automated evaluation of a large number of different models provide a useful tool in identifying the systematic relationships between experimental data. However, many of the existing model selection algorithms are not able to address complex model structures, such as systems of differential equations, and partly rely on local or exhaustive search methods which are inappropriate for the analysis of various biological systems. Therefore, we developed a flexible model selection algorithm that performs a robust and dynamical search of large model spaces to identify complex systems dynamics and applied it to the analysis of T cell proliferation dynamics within different culture conditions. The algorithm, which is available as an R-package, provides an advanced tool for the analysis of complex systems behaviour and, due to its flexible structure, can be applied to a large variety of biological problems.

Suggested Citation

  • Michael Gabel & Tobias Hohl & Andrea Imle & Oliver T Fackler & Frederik Graw, 2019. "FAMoS: A Flexible and dynamic Algorithm for Model Selection to analyse complex systems dynamics," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-23, August.
  • Handle: RePEc:plo:pcbi00:1007230
    DOI: 10.1371/journal.pcbi.1007230
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007230
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007230&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anton Zilman & Vitaly V Ganusov & Alan S Perelson, 2010. "Stochastic Models of Lymphocyte Proliferation and Death," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-14, September.
    2. Calcagno, Vincent & de Mazancourt, Claire, 2010. "glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i12).
    3. Andrea Imle & Peter Kumberger & Nikolas D. Schnellbächer & Jana Fehr & Paola Carrillo-Bustamante & Janez Ales & Philip Schmidt & Christian Ritter & William J. Godinez & Barbara Müller & Karl Rohr & Fr, 2019. "Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjana Gupta & Robin E C Lee & James R Faeder, 2020. "Parallel Tempering with Lasso for model reduction in systems biology," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    2. Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    3. Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
    4. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
    5. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    6. László Kovács, 2019. "Applications of Metaheuristics in Insurance," Society and Economy, Akadémiai Kiadó, Hungary, vol. 41(3), pages 371-395, September.
    7. Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
    8. Verónica Lloréns-Rico & Ann C. Gregory & Johan Van Weyenbergh & Sander Jansen & Tina Van Buyten & Junbin Qian & Marcos Braz & Soraya Maria Menezes & Pierre Van Mol & Lore Vanderbeke & Christophe Dooms, 2021. "Clinical practices underlie COVID-19 patient respiratory microbiome composition and its interactions with the host," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Guangzhou Wang & Haley M. Burrill & Laura Y. Podzikowski & Maarten B. Eppinga & Fusuo Zhang & Junling Zhang & Peggy A. Schultz & James D. Bever, 2023. "Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Hongbo Guo & Enzai Du & César Terrer & Robert B. Jackson, 2024. "Global distribution of surface soil organic carbon in urban greenspaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Lisa Cherry & Darren Mollendor & Bill Eisenstein & Terri S. Hogue & Katharyn Peterman & John E. McCray, 2019. "Predicting Parcel-Scale Redevelopment Using Linear and Logistic Regression—the Berkeley Neighborhood Denver, Colorado Case Study," Sustainability, MDPI, vol. 11(7), pages 1-16, March.
    12. Joon-myoung Kwon & Ki-Hyun Jeon & Hyue Mee Kim & Min Jeong Kim & Sungmin Lim & Kyung-Hee Kim & Pil Sang Song & Jinsik Park & Rak Kyeong Choi & Byung-Hee Oh, 2019. "Deep-learning-based risk stratification for mortality of patients with acute myocardial infarction," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-15, October.
    13. Lingyan Zhou & Xuhui Zhou & Yanghui He & Yuling Fu & Zhenggang Du & Meng Lu & Xiaoying Sun & Chenghao Li & Chunyan Lu & Ruiqiang Liu & Guiyao Zhou & Shahla Hosseni Bai & Madhav P. Thakur, 2022. "Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Konstantin A. Kholodilin, 2016. "War, housing rents, and free market: Berlin's rental housing during World War I," European Review of Economic History, European Historical Economics Society, vol. 20(3), pages 322-344.
    15. Konstantin A. Kholodilin, 2015. "War, Housing Rents, and Free Market: A Case of Berlin's Rental Housing Market during the World War I," Discussion Papers of DIW Berlin 1477, DIW Berlin, German Institute for Economic Research.
    16. Ervin, Daniel & Lopéz-Carr, David & Riosmena, Fernando & Ryan, Sadie J., 2020. "Examining the relationship between migration and forest cover change in Mexico from 2001 to 2010," Land Use Policy, Elsevier, vol. 91(C).
    17. Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
    18. Geshere Abdisa Gurmesa & Ang Wang & Shanlong Li & Shushi Peng & Wim Vries & Per Gundersen & Philippe Ciais & Oliver L. Phillips & Erik A. Hobbie & Weixing Zhu & Knute Nadelhoffer & Yi Xi & Edith Bai &, 2022. "Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Stéphane Guitet & Bruno Hérault & Quentin Molto & Olivier Brunaux & Pierre Couteron, 2015. "Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-22, September.
    20. Huyen DO VAN & Christine THOMAS-AGNAN & Anne VANHEMS, 2014. "Testing Areal Interpolation Methods With Us Census 2010 Data," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 40, pages 83-96.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.