IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007188.html
   My bibliography  Save this article

Primacy coding facilitates effective odor discrimination when receptor sensitivities are tuned

Author

Listed:
  • David Zwicker

Abstract

The olfactory system faces the difficult task of identifying an enormous variety of odors independent of their intensity. Primacy coding, where the odor identity is encoded by the receptor types that respond earliest, might provide a compact and informative representation that can be interpreted efficiently by the brain. In this paper, we analyze the information transmitted by a simple model of primacy coding using numerical simulations and statistical descriptions. We show that the encoded information depends strongly on the number of receptor types included in the primacy representation, but only weakly on the size of the receptor repertoire. The representation is independent of the odor intensity and the transmitted information is useful to perform typical olfactory tasks with close to experimentally measured performance. Interestingly, we find situations in which a smaller receptor repertoire is advantageous for discriminating odors. The model also suggests that overly sensitive receptor types could dominate the entire response and make the whole array useless, which allows us to predict how receptor arrays need to adapt to stay useful during environmental changes. Taken together, we show that primacy coding is more useful than simple binary and normalized coding, essentially because the sparsity of the odor representations is independent of the odor statistics, in contrast to the alternatives. Primacy coding thus provides an efficient odor representation that is independent of the odor intensity and might thus help to identify odors in the olfactory cortex.Author summary: Humans can identify odors independent of their intensity. Experimental data suggest that this is accomplished by representing the odor identity by the earliest responding receptor types. Using theoretical modeling, we here show that such a primacy code outperforms alternative encodings and allows discriminating odors with close to experimentally measured performance. This performance depends strongly on the number of receptors considered in the primacy code, but the receptor repertoire size is less important. The model also suggests a strong evolutionary pressure on the receptor sensitivities, which could explain observed receptor copy number adaptations. By predicting psycho-physical experiments, the model will thus contribute to our understanding of the olfactory system.

Suggested Citation

  • David Zwicker, 2019. "Primacy coding facilitates effective odor discrimination when receptor sensitivities are tuned," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-22, July.
  • Handle: RePEc:plo:pcbi00:1007188
    DOI: 10.1371/journal.pcbi.1007188
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007188
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007188&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gregory S. X. E. Jefferis & Elizabeth C. Marin & Reinhard F. Stocker & Liqun Luo, 2001. "Target neuron prespecification in the olfactory map of Drosophila," Nature, Nature, vol. 414(6860), pages 204-208, November.
    2. Christopher D. Wilson & Gabriela O. Serrano & Alexei A. Koulakov & Dmitry Rinberg, 2017. "A primacy code for odor identity," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Chenggui & Sun, JianQiang & Jin, Jun & Shuai, Jianwei & Li, Xiang & Yao, Yuangen & Xu, Xufan, 2023. "The power law statistics of the spiking timing in a neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Rishabh Chandak & Baranidharan Raman, 2023. "Neural manifolds for odor-driven innate and acquired appetitive preferences," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.