IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01432-4.html
   My bibliography  Save this article

A primacy code for odor identity

Author

Listed:
  • Christopher D. Wilson

    (NYU Neuroscience Institute, New York University Langone Medical Center)

  • Gabriela O. Serrano

    (NYU Neuroscience Institute, New York University Langone Medical Center)

  • Alexei A. Koulakov

    (Cold Spring Harbor Laboratory, Cold Spring Harbor)

  • Dmitry Rinberg

    (NYU Neuroscience Institute, New York University Langone Medical Center
    Center for Neural Science, New York University)

Abstract

Humans can identify visual objects independently of view angle and lighting, words independently of volume and pitch, and smells independently of concentration. The computational principles underlying invariant object recognition remain mostly unknown. Here we propose that, in olfaction, a small and relatively stable set comprised of the earliest activated receptors forms a code for concentration-invariant odor identity. One prediction of this “primacy coding” scheme is that decisions based on odor identity can be made solely using early odor-evoked neural activity. Using an optogenetic masking paradigm, we define the sensory integration time necessary for odor identification and demonstrate that animals can use information occurring

Suggested Citation

  • Christopher D. Wilson & Gabriela O. Serrano & Alexei A. Koulakov & Dmitry Rinberg, 2017. "A primacy code for odor identity," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01432-4
    DOI: 10.1038/s41467-017-01432-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01432-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01432-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Zwicker, 2019. "Primacy coding facilitates effective odor discrimination when receptor sensitivities are tuned," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-22, July.
    2. Rishabh Chandak & Baranidharan Raman, 2023. "Neural manifolds for odor-driven innate and acquired appetitive preferences," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Yao, Chenggui & Sun, JianQiang & Jin, Jun & Shuai, Jianwei & Li, Xiang & Yao, Yuangen & Xu, Xufan, 2023. "The power law statistics of the spiking timing in a neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01432-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.