IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006206.html
   My bibliography  Save this article

Stochastic shielding and edge importance for Markov chains with timescale separation

Author

Listed:
  • Deena R Schmidt
  • Roberto F Galán
  • Peter J Thomas

Abstract

Nerve cells produce electrical impulses (“spikes”) through the coordinated opening and closing of ion channels. Markov processes with voltage-dependent transition rates capture the stochasticity of spike generation at the cost of complex, time-consuming simulations. Schmandt and Galán introduced a novel method, based on the stochastic shielding approximation, as a fast, accurate method for generating approximate sample paths with excellent first and second moment agreement to exact stochastic simulations. We previously analyzed the mathematical basis for the method’s remarkable accuracy, and showed that for models with a Gaussian noise approximation, the stationary variance of the occupancy at each vertex in the ion channel state graph could be written as a sum of distinct contributions from each edge in the graph. We extend this analysis to arbitrary discrete population models with first-order kinetics. The resulting decomposition allows us to rank the “importance” of each edge’s contribution to the variance of the current under stationary conditions. In most cases, transitions between open (conducting) and closed (non-conducting) states make the greatest contributions to the variance, but there are exceptions. In a 5-state model of the nicotinic acetylcholine receptor, at low agonist concentration, a pair of “hidden” transitions (between two closed states) makes a greater contribution to the variance than any of the open-closed transitions. We exhaustively investigate this “edge importance reversal” phenomenon in simplified 3-state models, and obtain an exact formula for the contribution of each edge to the variance of the open state. Two conditions contribute to reversals: the opening rate should be faster than all other rates in the system, and the closed state leading to the opening rate should be sparsely occupied. When edge importance reversal occurs, current fluctuations are dominated by a slow noise component arising from the hidden transitions.Author summary: Discrete state, continuous time Markov processes occur throughout cell biology, neuroscience, and ecology, representing the random dynamics of processes transitioning among multiple locations or states. Complexity reduction for such models aims to capture the essential dynamics and stochastic properties via a simpler representation, with minimal loss of accuracy. Classical approaches, such as aggregation of nodes and elimination of fast variables, lead to reduced models that are no longer Markovian. Stochastic shielding provides an alternative approach by simplifying the description of the noise driving the process, while preserving the Markov property, by removing from the model those fluctuations that are not directly observable. We previously applied the stochastic shielding approximation to several Markov processes arising in neuroscience and processes on random graphs. Here we explore the range of validity of stochastic shielding for processes with nonuniform stationary probabilities and multiple timescales, including ion channels with “bursty” dynamics. We show that stochastic shielding is robust to the introduction of timescale separation, for a class of simple networks, but it can break down for more complex systems with three distinct timescales. We also show that our related edge importance measure remains valid for arbitrary networks regardless of multiple timescales.

Suggested Citation

  • Deena R Schmidt & Roberto F Galán & Peter J Thomas, 2018. "Stochastic shielding and edge importance for Markov chains with timescale separation," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-35, June.
  • Handle: RePEc:plo:pcbi00:1006206
    DOI: 10.1371/journal.pcbi.1006206
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006206
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006206&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Christoph Zechner & Heinz Koeppl, 2014. "Uncoupled Analysis of Stochastic Reaction Networks in Fluctuating Environments," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-9, December.
    3. KatjuS̆a Brejc & Willem J. van Dijk & Remco V. Klaassen & Mascha Schuurmans & John van der Oost & August B. Smit & Titia K. Sixma, 2001. "Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors," Nature, Nature, vol. 411(6835), pages 269-276, May.
    4. Johan Paulsson, 2004. "Summing up the noise in gene networks," Nature, Nature, vol. 427(6973), pages 415-418, January.
    5. Jae Kyoung Kim & Eduardo D Sontag, 2017. "Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.
    6. Giorgos Minas & David A Rand, 2017. "Long-time analytic approximation of large stochastic oscillators: Simulation, analysis and inference," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-23, July.
    7. Patricio Orio & Daniel Soudry, 2012. "Simple, Fast and Accurate Implementation of the Diffusion Approximation Algorithm for Stochastic Ion Channels with Multiple States," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou Fang & Ankit Gupta & Sant Kumar & Mustafa Khammash, 2024. "Advanced methods for gene network identification and noise decomposition from single-cell data," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    3. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    4. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    5. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    6. Pirvu Daniela & Barbuceanu Mircea, 2016. "Recent Contributions Of The Statistical Physics In The Research Of Banking, Stock Exchange And Foreign Exchange Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 85-92, April.
    7. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    8. Yu, Shuo & Alqahtani, Fayez & Tolba, Amr & Lee, Ivan & Jia, Tao & Xia, Feng, 2022. "Collaborative Team Recognition: A Core Plus Extension Structure," Journal of Informetrics, Elsevier, vol. 16(4).
    9. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    10. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    11. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    12. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.
    13. Shiau, Wen-Lung & Dwivedi, Yogesh K. & Yang, Han Suan, 2017. "Co-citation and cluster analyses of extant literature on social networks," International Journal of Information Management, Elsevier, vol. 37(5), pages 390-399.
    14. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    15. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    16. Masa Tsuchiya & Vincent Piras & Alessandro Giuliani & Masaru Tomita & Kumar Selvarajoo, 2010. "Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    17. Lee, Julian, 2023. "Poisson distributions in stochastic dynamics of gene expression: What events do they count?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    18. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    19. Atieh Mirshahvalad & Johan Lindholm & Mattias Derlén & Martin Rosvall, 2012. "Significant Communities in Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-7, March.
    20. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.