Author
Listed:
- Xiaoru Xue
- Chuan Xue
- Min Tang
Abstract
Recent experiments showed that engineered Escherichia coli colonies grow and self-organize into periodic stripes with high and low cell densities in semi-solid agar. The stripes develop sequentially behind a radially propagating colony front, similar to the formation of many other periodic patterns in nature. These bacteria were created by genetically coupling the intracellular chemotaxis pathway of wild-type cells with a quorum sensing module through the protein CheZ. In this paper, we develop multiscale models to investigate how this intracellular pathway affects stripe formation. We first develop a detailed hybrid model that treats each cell as an individual particle and incorporates intracellular signaling via an internal ODE system. To overcome the computational cost of the hybrid model caused by the large number of cells involved, we next derive a mean-field PDE model from the hybrid model using asymptotic analysis. We show that this analysis is justified by the tight agreement between the PDE model and the hybrid model in 1D simulations. Numerical simulations of the PDE model in 2D with radial symmetry agree with experimental data semi-quantitatively. Finally, we use the PDE model to make a number of testable predictions on how the stripe patterns depend on cell-level parameters, including cell speed, cell doubling time and the turnover rate of intracellular CheZ.Author summary: One of the central problems in biology is to understand the underlying mechanisms responsible for spatial pattern formation in complex systems. This is a difficult task because the essential mechanisms for pattern formation often involve multiple space and time scales and are often buried in overwhelmingly complex physiological details. Recently, synthetic biology has made it possible to investigate strategies of pattern formation in relatively simpler, but still complex, systems. Here we develop multiscale models to help explain the role of intracellular signaling in the formation of stripe patterns in engineered E. coli colonies.
Suggested Citation
Xiaoru Xue & Chuan Xue & Min Tang, 2018.
"The role of intracellular signaling in the stripe formation in engineered Escherichia coli populations,"
PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-23, June.
Handle:
RePEc:plo:pcbi00:1006178
DOI: 10.1371/journal.pcbi.1006178
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006178. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.