IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v434y2005i7037d10.1038_nature03461.html
   My bibliography  Save this article

A synthetic multicellular system for programmed pattern formation

Author

Listed:
  • Subhayu Basu

    (Princeton University)

  • Yoram Gerchman

    (Princeton University)

  • Cynthia H. Collins

    (California Institute of Technology 210-41)

  • Frances H. Arnold

    (California Institute of Technology 210-41)

  • Ron Weiss

    (Princeton University
    Princeton University)

Abstract

Pattern formation is in the genes Multicellular organisms, and some single-celled organisms, are capable of producing predetermined patterns. Patterning is key to developmental processes, and is also relevant to tissue engineering and biomaterials design. Basu et al. describe a new synthetic multicellular system in which cells are genetically programmed to form patterns on a surface based on cell–cell communication. Genetic circuits were constructed from well defined simple parts in bacteria that integrate transcriptional regulation with cell–cell signalling elements. These circuits transform a lawn of undifferentiated cells into two-dimensional patterns that resemble a bullseye, ellipse, heart and clover.

Suggested Citation

  • Subhayu Basu & Yoram Gerchman & Cynthia H. Collins & Frances H. Arnold & Ron Weiss, 2005. "A synthetic multicellular system for programmed pattern formation," Nature, Nature, vol. 434(7037), pages 1130-1134, April.
  • Handle: RePEc:nat:nature:v:434:y:2005:i:7037:d:10.1038_nature03461
    DOI: 10.1038/nature03461
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03461
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alice Boo & Tyler Toth & Qiguo Yu & Alexander Pfotenhauer & Brandon D. Fields & Scott C. Lenaghan & C. Neal Stewart & Christopher A. Voigt, 2024. "Synthetic microbe-to-plant communication channels," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Oleg Kanakov & Roman Kotelnikov & Ahmed Alsaedi & Lev Tsimring & Ramón Huerta & Alexey Zaikin & Mikhail Ivanchenko, 2015. "Multi-Input Distributed Classifiers for Synthetic Genetic Circuits," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    3. Javier Macia & Romilde Manzoni & Núria Conde & Arturo Urrios & Eulàlia de Nadal & Ricard Solé & Francesc Posas, 2016. "Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-24, February.
    4. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    5. Kazufumi Hosoda & Shingo Suzuki & Yoshinori Yamauchi & Yasunori Shiroguchi & Akiko Kashiwagi & Naoaki Ono & Kotaro Mori & Tetsuya Yomo, 2011. "Cooperative Adaptation to Establishment of a Synthetic Bacterial Mutualism," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-9, February.
    6. Guillermo Rodrigo & Santiago F Elena, 2011. "Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-7, February.
    7. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    8. Zomorrodi, Ali R. & Maranas, Costas D., 2014. "Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits," European Journal of Operational Research, Elsevier, vol. 237(2), pages 665-676.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:434:y:2005:i:7037:d:10.1038_nature03461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.