IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005019.html
   My bibliography  Save this article

Dynamic Reweighting of Auditory Modulation Filters

Author

Listed:
  • Eva R M Joosten
  • Shihab A Shamma
  • Christian Lorenzi
  • Peter Neri

Abstract

Sound waveforms convey information largely via amplitude modulations (AM). A large body of experimental evidence has provided support for a modulation (bandpass) filterbank. Details of this model have varied over time partly reflecting different experimental conditions and diverse datasets from distinct task strategies, contributing uncertainty to the bandwidth measurements and leaving important issues unresolved. We adopt here a solely data-driven measurement approach in which we first demonstrate how different models can be subsumed within a common ‘cascade’ framework, and then proceed to characterize the cascade via system identification analysis using a single stimulus/task specification and hence stable task rules largely unconstrained by any model or parameters. Observers were required to detect a brief change in level superimposed onto random level changes that served as AM noise; the relationship between trial-by-trial noisy fluctuations and corresponding human responses enables targeted identification of distinct cascade elements. The resulting measurements exhibit a dynamic complex picture in which human perception of auditory modulations appears adaptive in nature, evolving from an initial lowpass to bandpass modes (with broad tuning, Q∼1) following repeated stimulus exposure.Author Summary: Amplitude modulations are considered the key carriers of intelligible information in auditory signals, and consequently it is of significant interest to discover how they are neurally analyzed and perceptually encoded. A dominant model has emerged from extensive experimental and theoretical studies of this phenomenon. This model posits that amplitude modulations are parsed into channels of different temporal rates via a bank of bandpass filters. Using exclusively data driven approaches with minimal assumptions about the structure of the model, the picture that emerges is of an adaptive process. Initially, human listeners in these tasks perceive modulations as if through a lowpass filter with very low cutoff frequency, which gradually evolves to become a broadly tuned bandpass process at higher modulation frequencies, reflecting the modulations of the target stimuli. This surprising dynamic characteristic emphasizes the plastic nature of modulation analysis in sensory perception.

Suggested Citation

  • Eva R M Joosten & Shihab A Shamma & Christian Lorenzi & Peter Neri, 2016. "Dynamic Reweighting of Auditory Modulation Filters," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-23, July.
  • Handle: RePEc:plo:pcbi00:1005019
    DOI: 10.1371/journal.pcbi.1005019
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005019
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005019&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey D Fitzgerald & Ryan J Rowekamp & Lawrence C Sincich & Tatyana O Sharpee, 2011. "Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-9, October.
    2. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James M McFarland & Yuwei Cui & Daniel A Butts, 2013. "Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    2. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    3. Cheng, Jianquan & Bertolini, Luca, 2013. "Measuring urban job accessibility with distance decay, competition and diversity," Journal of Transport Geography, Elsevier, vol. 30(C), pages 100-109.
    4. M. De Donno & M. Pratelli, 2006. "A theory of stochastic integration for bond markets," Papers math/0602532, arXiv.org.
    5. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    6. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    7. Henrekson, Magnus & Johansson, Dan, 2010. "Firm Growth, Institutions and Structural Transformation," Ratio Working Papers 150, The Ratio Institute.
    8. Karen K. Lewis, 2011. "Global Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 435-466, December.
    9. DAVID M. BLAU & WILBERT van der KLAAUW, 2013. "What Determines Family Structure?," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 579-604, January.
    10. Panagiota DIONYSOPOULOU & Georgios SVARNIAS & Theodore PAPAILIAS, 2021. "Total Quality Management In Public Sector, Case Study: Customs Service," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 153-168, June.
    11. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    12. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.
    13. Julie Holland Mortimer, 2007. "Price Discrimination, Copyright Law, and Technological Innovation: Evidence from the Introduction of DVDs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(3), pages 1307-1350.
    14. Suwan Shen & Xi Feng & Zhong Ren Peng, 2016. "A framework to analyze vulnerability of critical infrastructure to climate change: the case of a coastal community in Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 589-609, October.
    15. Jean-Bernard Chatelain & Kirsten Ralf, 2017. "Can We Identify the Fed's Preferences?," Working Papers halshs-01549908, HAL.
    16. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    17. Jan Babecký & Fabrizio Coricelli & Roman Horváth, 2009. "Assessing Inflation Persistence: Micro Evidence on an Inflation Targeting Economy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(2), pages 102-127, June.
    18. Lloyd, S. P., 2017. "Unconventional Monetary Policy and the Interest Rate Channel: Signalling and Portfolio Rebalancing," Cambridge Working Papers in Economics 1735, Faculty of Economics, University of Cambridge.
    19. Fischer, Andreas M. & Ranaldo, Angelo, 2011. "Does FOMC news increase global FX trading?," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2965-2973, November.
    20. Mazzlida Mat Deli & Ruhizan Mohamad Yasin, 2016. "Quality Education of Orang Asli in Malaysia," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 6(11), pages 233-240, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.