IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005002.html
   My bibliography  Save this article

How to Estimate Epidemic Risk from Incomplete Contact Diaries Data?

Author

Listed:
  • Rossana Mastrandrea
  • Alain Barrat

Abstract

Social interactions shape the patterns of spreading processes in a population. Techniques such as diaries or proximity sensors allow to collect data about encounters and to build networks of contacts between individuals. The contact networks obtained from these different techniques are however quantitatively different. Here, we first show how these discrepancies affect the prediction of the epidemic risk when these data are fed to numerical models of epidemic spread: low participation rate, under-reporting of contacts and overestimation of contact durations in contact diaries with respect to sensor data determine indeed important differences in the outcomes of the corresponding simulations with for instance an enhanced sensitivity to initial conditions. Most importantly, we investigate if and how information gathered from contact diaries can be used in such simulations in order to yield an accurate description of the epidemic risk, assuming that data from sensors represent the ground truth. The contact networks built from contact sensors and diaries present indeed several structural similarities: this suggests the possibility to construct, using only the contact diary network information, a surrogate contact network such that simulations using this surrogate network give the same estimation of the epidemic risk as simulations using the contact sensor network. We present and compare several methods to build such surrogate data, and show that it is indeed possible to obtain a good agreement between the outcomes of simulations using surrogate and sensor data, as long as the contact diary information is complemented by publicly available data describing the heterogeneity of the durations of human contacts.Author Summary: Schools, offices, hospitals play an important role in the spreading of epidemics. Information about interactions between individuals in such contexts can help understand the patterns of transmission and design ad hoc immunization strategies. Data about contacts can be collected through various techniques such as diaries or proximity sensors. Here, we first ask if the corresponding datasets give similar predictions of the epidemic risk when they are used to build a network of contacts among individuals. Not surprisingly, the answer is negative: indeed, if we consider data from sensors as the ground truth, diaries are affected by low participation rate, underreporting and overestimation of durations. Is it however possible, despite these biases, to use data from contact diaries to obtain sensible epidemic risk predictions? We show here that, thanks to the structural similarities between the two networks, it is possible to use the contact diaries to build surrogate versions of the contact network obtained from the sensor data, such that both yield the same epidemic risk estimation. We show that the construction of such surrogate networks can be performed using solely the information contained in the contact diaries, complemented by publicly available data on the heterogeneity of cumulative contact durations between individuals.

Suggested Citation

  • Rossana Mastrandrea & Alain Barrat, 2016. "How to Estimate Epidemic Risk from Incomplete Contact Diaries Data?," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-19, June.
  • Handle: RePEc:plo:pcbi00:1005002
    DOI: 10.1371/journal.pcbi.1005002
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005002
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005002&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Génois, Mathieu & Vestergaard, Christian L. & Fournet, Julie & Panisson, André & Bonmarin, Isabelle & Barrat, Alain, 2015. "Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers," Network Science, Cambridge University Press, vol. 3(3), pages 326-347, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Mingwu & Dankowicz, Harry, 2019. "Impact of temporal network structures on the speed of consensus formation in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1355-1370.
    2. Tao, Li & Kong, Shengzhou & He, Langzhou & Zhang, Fan & Li, Xianghua & Jia, Tao & Han, Zhen, 2022. "A sequential-path tree-based centrality for identifying influential spreaders in temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Gail E. Potter & Nicole Bohme Carnegie & Jonathan D. Sugimoto & Aldiouma Diallo & John C. Victor & Kathleen M. Neuzil & M. Elizabeth Halloran, 2022. "Using social contact data to improve the overall effect estimate of a cluster‐randomized influenza vaccination program in Senegal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 70-90, January.
    4. Peng, Hao & Qian, Cheng & Zhao, Dandan & Zhong, Ming & Han, Jianmin & Zhou, Tao & Wang, Wei, 2024. "Message-passing approach to higher-order percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    5. Yin, Ran-Ran & Guo, Qiang & Yang, Jian-Nan & Liu, Jian-Guo, 2018. "Inter-layer similarity-based eigenvector centrality measures for temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 165-173.
    6. Xi Guo & Abhineet Gupta & Anand Sampat & Chengwei Zhai, 2022. "A stochastic contact network model for assessing outbreak risk of COVID-19 in workplaces," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-23, January.
    7. Duan, Yuxian & Huang, Jian & Deng, Hanqiang & Ni, Xiangrong, 2024. "Robustness of hypergraph under attack with limited information based on percolation theory," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.