IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004586.html
   My bibliography  Save this article

AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility

Author

Listed:
  • Pradeep Anand Ravindranath
  • Stefano Forli
  • David S Goodsell
  • Arthur J Olson
  • Michel F Sanner

Abstract

Automated docking of drug-like molecules into receptors is an essential tool in structure-based drug design. While modeling receptor flexibility is important for correctly predicting ligand binding, it still remains challenging. This work focuses on an approach in which receptor flexibility is modeled by explicitly specifying a set of receptor side-chains a-priori. The challenges of this approach include the: 1) exponential growth of the search space, demanding more efficient search methods; and 2) increased number of false positives, calling for scoring functions tailored for flexible receptor docking. We present AutoDockFR–AutoDock for Flexible Receptors (ADFR), a new docking engine based on the AutoDock4 scoring function, which addresses the aforementioned challenges with a new Genetic Algorithm (GA) and customized scoring function. We validate ADFR using the Astex Diverse Set, demonstrating an increase in efficiency and reliability of its GA over the one implemented in AutoDock4. We demonstrate greatly increased success rates when cross-docking ligands into apo receptors that require side-chain conformational changes for ligand binding. These cross-docking experiments are based on two datasets: 1) SEQ17 –a receptor diversity set containing 17 pairs of apo-holo structures; and 2) CDK2 –a ligand diversity set composed of one CDK2 apo structure and 52 known bound inhibitors. We show that, when cross-docking ligands into the apo conformation of the receptors with up to 14 flexible side-chains, ADFR reports more correctly cross-docked ligands than AutoDock Vina on both datasets with solutions found for 70.6% vs. 35.3% systems on SEQ17, and 76.9% vs. 61.5% on CDK2. ADFR also outperforms AutoDock Vina in number of top ranking solutions on both datasets. Furthermore, we show that correctly docked CDK2 complexes re-create on average 79.8% of all pairwise atomic interactions between the ligand and moving receptor atoms in the holo complexes. Finally, we show that down-weighting the receptor internal energy improves the ranking of correctly docked poses and that runtime for AutoDockFR scales linearly when side-chain flexibility is added.Author Summary: Docking programs are widely used to identify drug-like molecules interacting with a given receptor to inhibit its function. Although receptors are known to change conformation upon ligand binding, most docking programs model small molecules as flexible while modeling receptors as rigid, thus limiting the range of therapeutic targets for which docking can be applied. Here we introduce a new docking program, AutoDockFR, which simulates partial receptor flexibility by allowing a large number of explicitly specified receptor side-chains to explore their conformational space, while searching for energetically favorable binding poses for a given ligand. We show that we achieve higher docking success rates by including receptor flexibility in the binding site of receptor conformations that are experimentally determined without the ligand present (i.e. apo conformations). Previous approaches based on the a-priori and explicit specification of the part of the receptor to be considered flexible, have so far been limited to a small number of flexible protein side-chains (2–5), thus requiring prior knowledge of receptor side-chains undergoing conformational change upon binding of a given ligand. The demonstrated ability of AutoDockFR in identifying correct solutions for problems with up to 14 flexible receptor side-chains lessens this requirement.

Suggested Citation

  • Pradeep Anand Ravindranath & Stefano Forli & David S Goodsell & Arthur J Olson & Michel F Sanner, 2015. "AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-28, December.
  • Handle: RePEc:plo:pcbi00:1004586
    DOI: 10.1371/journal.pcbi.1004586
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004586
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004586&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    2. Francisco J. Solis & Roger J.-B. Wets, 1981. "Minimization by Random Search Techniques," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 19-30, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aqel Albutti, 2021. "Rescuing the Host Immune System by Targeting the Immune Evasion Complex ORF8-IRF3 in SARS-CoV-2 Infection with Natural Products Using Molecular Modeling Approaches," IJERPH, MDPI, vol. 19(1), pages 1-13, December.
    2. Marco Malatesta & Emanuele Fornasier & Martino Luigi Salvo & Angela Tramonti & Erika Zangelmi & Alessio Peracchi & Andrea Secchi & Eugenia Polverini & Gabriele Giachin & Roberto Battistutta & Roberto , 2024. "One substrate many enzymes virtual screening uncovers missing genes of carnitine biosynthesis in human and mouse," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Brian C. Sanders & Suman Pokhrel & Audrey D. Labbe & Irimpan I. Mathews & Connor J. Cooper & Russell B. Davidson & Gwyndalyn Phillips & Kevin L. Weiss & Qiu Zhang & Hugh O’Neill & Manat Kaur & Jurgen , 2023. "Potent and selective covalent inhibition of the papain-like protease from SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    2. Bo Cowgill & Jonathan M. V. Davis & B. Pablo Montagnes & Patryk Perkowski, 2024. "Stable Matching on the Job? Theory and Evidence on Internal Talent Markets," CESifo Working Paper Series 11120, CESifo.
    3. C. P. Stephens & W. Baritompa, 1998. "Global Optimization Requires Global Information," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 575-588, March.
    4. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    5. Weihua Yang & Xu Zhang & Xia Wang, 2024. "The Wasserstein Metric between a Discrete Probability Measure and a Continuous One," Mathematics, MDPI, vol. 12(15), pages 1-13, July.
    6. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    7. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    8. Nisse, Nicolas & Salch, Alexandre & Weber, Valentin, 2023. "Recovery of disrupted airline operations using k-maximum matching in graphs," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1061-1072.
    9. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    10. Hvattum, Lars Magnus & Glover, Fred, 2009. "Finding local optima of high-dimensional functions using direct search methods," European Journal of Operational Research, Elsevier, vol. 195(1), pages 31-45, May.
    11. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    12. Omar Zatarain & Jesse Yoe Rumbo-Morales & Silvia Ramos-Cabral & Gerardo Ortíz-Torres & Felipe d. J. Sorcia-Vázquez & Iván Guillén-Escamilla & Juan Carlos Mixteco-Sánchez, 2023. "A Method for Perception and Assessment of Semantic Textual Similarities in English," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
    13. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    14. Winker, Peter, 2023. "Visualizing Topic Uncertainty in Topic Modelling," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277584, Verein für Socialpolitik / German Economic Association.
    15. Robert M. Curry & Joseph Foraker & Gary Lazzaro & David M. Ruth, 2024. "Practice Summary: Optimal Student Group Reassignment at U.S. Naval Academy," Interfaces, INFORMS, vol. 54(3), pages 205-210, May.
    16. Aidin Rezaeian & Hamidreza Koosha & Mohammad Ranjbar & Saeed Poormoaied, 2024. "The assignment of project managers to projects in an uncertain dynamic environment," Annals of Operations Research, Springer, vol. 341(2), pages 1107-1134, October.
    17. Dillenburger, Steven P. & Cochran, Jeffery K. & Cammarano, Vincent R., 2013. "Minimizing supply airdrop collateral damage risk," Socio-Economic Planning Sciences, Elsevier, vol. 47(1), pages 9-19.
    18. Tran Hoang Hai, 2020. "Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis," Statistical Papers, Springer, vol. 61(1), pages 1-16, February.
    19. Delafield, Gemma & Smith, Greg S. & Day, Brett & Holland, Robert A. & Donnison, Caspar & Hastings, Astley & Taylor, Gail & Owen, Nathan & Lovett, Andrew, 2024. "Spatial context matters: Assessing how future renewable energy pathways will impact nature and society," Renewable Energy, Elsevier, vol. 220(C).
    20. P. Senthil Kumar & R. Jahir Hussain, 2016. "A Simple Method for Solving Fully Intuitionistic Fuzzy Real Life Assignment Problem," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 7(2), pages 39-61, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.