IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004479.html
   My bibliography  Save this article

Dendritic Pooling of Noisy Threshold Processes Can Explain Many Properties of a Collision-Sensitive Visual Neuron

Author

Listed:
  • Matthias S Keil

Abstract

Power laws describe brain functions at many levels (from biophysics to psychophysics). It is therefore possible that they are generated by similar underlying mechanisms. Previously, the response properties of a collision-sensitive neuron were reproduced by a model which used a power law for scaling its inhibitory input. A common characteristic of such neurons is that they integrate information across a large part of the visual field. Here we present a biophysically plausible model of collision-sensitive neurons with η-like response properties, in which we assume that each information channel is noisy and has a response threshold. Then, an approximative power law is obtained as a result of pooling these channels. We show that with this mechanism one can successfully predict many response characteristics of the Lobula Giant Movement Detector Neuron (LGMD). Moreover, the results depend critically on noise in the inhibitory pathway, but they are fairly robust against noise in the excitatory pathway.Author Summary: Many different animals (from insects to primates) try to escape from collision threats, because it is very possible that the approaching object is a predator. The corresponding neurons in the various nervous systems must therefore detect such threats and signal when it is time to escape. Surprisingly, the neurons of different animals which selectively respond to approaching objects have very similar properties. It is therefore worthwhile to understand their underlying computational principles. A common characteristic of such neurons is that they receive (or integrate) information from the whole visual field. The integration process is carried out by the dendritic tree of the neuron. Here we present a computational model in which we assume that each of the input signals is contaminated by noise, as well as having a response threshold (which has to be crossed in order to evoke a response). Then, dendritic integration approximates a mathematical function (a power law) which is essential in our model for explaining the response characteristics of collision-sensitive neurons. Thus, noise is used in a constructive way for computing collision-sensitive responses. Power laws are furthermore found in many different contexts, and may consequently hint at the presence of noise and thresholds.

Suggested Citation

  • Matthias S Keil, 2015. "Dendritic Pooling of Noisy Threshold Processes Can Explain Many Properties of a Collision-Sensitive Visual Neuron," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-17, October.
  • Handle: RePEc:plo:pcbi00:1004479
    DOI: 10.1371/journal.pcbi.1004479
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004479
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004479&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sergi Bermúdez i Badia & Ulysses Bernardet & Paul F M J Verschure, 2010. "Non-Linear Neuronal Responses as an Emergent Property of Afferent Networks: A Case Study of the Locust Lobula Giant Movement Detector," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-15, March.
    2. Fabrizio Gabbiani & Holger G. Krapp & Christof Koch & Gilles Laurent, 2002. "Multiplicative computation in a visual neuron sensitive to looming," Nature, Nature, vol. 420(6913), pages 320-324, November.
    3. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    2. Cheng, Jianquan & Bertolini, Luca, 2013. "Measuring urban job accessibility with distance decay, competition and diversity," Journal of Transport Geography, Elsevier, vol. 30(C), pages 100-109.
    3. M. De Donno & M. Pratelli, 2006. "A theory of stochastic integration for bond markets," Papers math/0602532, arXiv.org.
    4. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    5. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    6. Henrekson, Magnus & Johansson, Dan, 2010. "Firm Growth, Institutions and Structural Transformation," Ratio Working Papers 150, The Ratio Institute.
    7. Karen K. Lewis, 2011. "Global Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 435-466, December.
    8. DAVID M. BLAU & WILBERT van der KLAAUW, 2013. "What Determines Family Structure?," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 579-604, January.
    9. Panagiota DIONYSOPOULOU & Georgios SVARNIAS & Theodore PAPAILIAS, 2021. "Total Quality Management In Public Sector, Case Study: Customs Service," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 153-168, June.
    10. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    11. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.
    12. Julie Holland Mortimer, 2007. "Price Discrimination, Copyright Law, and Technological Innovation: Evidence from the Introduction of DVDs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(3), pages 1307-1350.
    13. Suwan Shen & Xi Feng & Zhong Ren Peng, 2016. "A framework to analyze vulnerability of critical infrastructure to climate change: the case of a coastal community in Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 589-609, October.
    14. Jean-Bernard Chatelain & Kirsten Ralf, 2017. "Can We Identify the Fed's Preferences?," Working Papers halshs-01549908, HAL.
    15. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    16. Jan Babecký & Fabrizio Coricelli & Roman Horváth, 2009. "Assessing Inflation Persistence: Micro Evidence on an Inflation Targeting Economy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(2), pages 102-127, June.
    17. Lloyd, S. P., 2017. "Unconventional Monetary Policy and the Interest Rate Channel: Signalling and Portfolio Rebalancing," Cambridge Working Papers in Economics 1735, Faculty of Economics, University of Cambridge.
    18. Fischer, Andreas M. & Ranaldo, Angelo, 2011. "Does FOMC news increase global FX trading?," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2965-2973, November.
    19. Mazzlida Mat Deli & Ruhizan Mohamad Yasin, 2016. "Quality Education of Orang Asli in Malaysia," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 6(11), pages 233-240, November.
    20. Ichiro Fukunaga, 2007. "Imperfect Common Knowledge, Staggered Price Setting, and the Effects of Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1711-1739, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.