IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004354.html
   My bibliography  Save this article

Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes

Author

Listed:
  • Lu Zhang
  • Daniel-Adriano Silva
  • Fátima Pardo-Avila
  • Dong Wang
  • Xuhui Huang

Abstract

The RNA polymerase II (Pol II) is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the “secondary channel” is the only route for NTP to reach the active site of the enzyme or if the “main channel” could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB) is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP) substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD) simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription.Author Summary: In eukaryotic cells, the RNA polymerase II (Pol II) is a central enzyme that reads the genetic information encoded in the DNA template to synthetize a messenger RNA. To perform its function, Pol II needs to have the substrate nucleoside triphosphate (NTP) diffuse into its deeply buried active site. Despite numerous efforts, the NTP entry routes remain elusive: NTP could diffuse only through the secondary channel, or also via the main channel. The structural information of the transcription bubble is essential to study this process, however, the unpaired non-template DNA of the transcription bubble is absent in the available X-ray crystal structures. In this regard, we have built a structural model of the Pol II elongation complex with reconstructed transcription bubble using existing experimental data. We then performed Molecular Dynamics (MD) simulations and applied structural analysis to study the routes of NTP diffusion. We found that sterically the probability of NTP loading through the secondary channel is more than twice that of the main channel. Further analysis of the non-bonded energetic contributions to NTP diffusion suggests that NTP diffusion through the main channel is greatly disfavored by the electrostatic repulsion between the substrate and negatively charged backbones of nucleotides in the non-template strand of the transcription bubble. Altogether, our findings suggest that the secondary channel is the more favorable NTP diffusion route for Pol II transcription elongation.

Suggested Citation

  • Lu Zhang & Daniel-Adriano Silva & Fátima Pardo-Avila & Dong Wang & Xuhui Huang, 2015. "Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-21, July.
  • Handle: RePEc:plo:pcbi00:1004354
    DOI: 10.1371/journal.pcbi.1004354
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004354
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004354&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elio A. Abbondanzieri & William J. Greenleaf & Joshua W. Shaevitz & Robert Landick & Steven M. Block, 2005. "Direct observation of base-pair stepping by RNA polymerase," Nature, Nature, vol. 438(7067), pages 460-465, November.
    2. Dmitry G. Vassylyev & Marina N. Vassylyeva & Jinwei Zhang & Murali Palangat & Irina Artsimovitch & Robert Landick, 2007. "Structural basis for substrate loading in bacterial RNA polymerase," Nature, Nature, vol. 448(7150), pages 163-168, July.
    3. Dmitry G. Vassylyev & Marina N. Vassylyeva & Anna Perederina & Tahir H. Tahirov & Irina Artsimovitch, 2007. "Structural basis for transcription elongation by bacterial RNA polymerase," Nature, Nature, vol. 448(7150), pages 157-162, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin-Tai Da & Fátima Pardo Avila & Dong Wang & Xuhui Huang, 2013. "A Two-State Model for the Dynamics of the Pyrophosphate Ion Release in Bacterial RNA Polymerase," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-9, April.
    2. Anastasiia Chaban & Leonid Minakhin & Ekaterina Goldobina & Brain Bae & Yue Hao & Sergei Borukhov & Leena Putzeys & Maarten Boon & Florian Kabinger & Rob Lavigne & Kira S. Makarova & Eugene V. Koonin , 2024. "Tail-tape-fused virion and non-virion RNA polymerases of a thermophilic virus with an extremely long tail," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Juntaek Oh & Zelin Shan & Shuichi Hoshika & Jun Xu & Jenny Chong & Steven A. Benner & Dmitry Lyumkis & Dong Wang, 2023. "A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Charles Bou-Nader & Ankur Bothra & David N. Garboczi & Stephen H. Leppla & Jinwei Zhang, 2022. "Structural basis of R-loop recognition by the S9.6 monoclonal antibody," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Juntaek Oh & Michiko Kimoto & Haoqing Xu & Jenny Chong & Ichiro Hirao & Dong Wang, 2023. "Structural basis of transcription recognition of a hydrophobic unnatural base pair by T7 RNA polymerase," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Ehsan Akbari & Melika Shahhosseini & Ariel Robbins & Michael G. Poirier & Jonathan W. Song & Carlos E. Castro, 2022. "Low cost and massively parallel force spectroscopy with fluid loading on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Antonino Ingargiola & Eitan Lerner & SangYoon Chung & Francesco Panzeri & Angelo Gulinatti & Ivan Rech & Massimo Ghioni & Shimon Weiss & Xavier Michalet, 2017. "Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-27, April.
    8. Jordan Douglas & Richard Kingston & Alexei J Drummond, 2020. "Bayesian inference and comparison of stochastic transcription elongation models," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-21, February.
    9. Lin-Tai Da & Chao E & Baogen Duan & Chuanbiao Zhang & Xin Zhou & Jin Yu, 2015. "A Jump-from-Cavity Pyrophosphate Ion Release Assisted by a Key Lysine Residue in T7 RNA Polymerase Transcription Elongation," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-22, November.
    10. Dingwei He & Linlin You & Xiaoxian Wu & Jing Shi & Aijia Wen & Zhi Yan & Wenhui Mu & Chengli Fang & Yu Feng & Yu Zhang, 2022. "Pseudomonas aeruginosa SutA wedges RNAP lobe domain open to facilitate promoter DNA unwinding," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Claire Chung & Bert M. Verheijen & Zoe Navapanich & Eric G. McGann & Sarah Shemtov & Guan-Ju Lai & Payal Arora & Atif Towheed & Suraiya Haroon & Agnes Holczbauer & Sharon Chang & Zarko Manojlovic & St, 2023. "Evolutionary conservation of the fidelity of transcription," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Jan Opfer & Kay-Eberhard Gottschalk, 2012. "Identifying Discrete States of a Biological System Using a Novel Step Detection Algorithm," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-10, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.