IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v438y2005i7067d10.1038_nature04268.html
   My bibliography  Save this article

Direct observation of base-pair stepping by RNA polymerase

Author

Listed:
  • Elio A. Abbondanzieri

    (Department of Applied Physics)

  • William J. Greenleaf

    (Department of Applied Physics)

  • Joshua W. Shaevitz

    (Department of Physics
    University of California)

  • Robert Landick

    (University of Wisconsin)

  • Steven M. Block

    (Department of Applied Physics
    Stanford University)

Abstract

During transcription, RNA polymerase (RNAP) moves processively along a DNA template, creating a complementary RNA. Here we present the development of an ultra-stable optical trapping system with ångström-level resolution, which we used to monitor transcriptional elongation by single molecules of Escherichia coli RNAP. Records showed discrete steps averaging 3.7 ± 0.6 Å, a distance equivalent to the mean rise per base found in B-DNA. By combining our results with quantitative gel analysis, we conclude that RNAP advances along DNA by a single base pair per nucleotide addition to the nascent RNA. We also determined the force–velocity relationship for transcription at both saturating and sub-saturating nucleotide concentrations; fits to these data returned a characteristic distance parameter equivalent to one base pair. Global fits were inconsistent with a model for movement incorporating a power stroke tightly coupled to pyrophosphate release, but consistent with a brownian ratchet model incorporating a secondary NTP binding site.

Suggested Citation

  • Elio A. Abbondanzieri & William J. Greenleaf & Joshua W. Shaevitz & Robert Landick & Steven M. Block, 2005. "Direct observation of base-pair stepping by RNA polymerase," Nature, Nature, vol. 438(7067), pages 460-465, November.
  • Handle: RePEc:nat:nature:v:438:y:2005:i:7067:d:10.1038_nature04268
    DOI: 10.1038/nature04268
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04268
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04268?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonino Ingargiola & Eitan Lerner & SangYoon Chung & Francesco Panzeri & Angelo Gulinatti & Ivan Rech & Massimo Ghioni & Shimon Weiss & Xavier Michalet, 2017. "Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-27, April.
    2. Jordan Douglas & Richard Kingston & Alexei J Drummond, 2020. "Bayesian inference and comparison of stochastic transcription elongation models," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-21, February.
    3. Lin-Tai Da & Fátima Pardo Avila & Dong Wang & Xuhui Huang, 2013. "A Two-State Model for the Dynamics of the Pyrophosphate Ion Release in Bacterial RNA Polymerase," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-9, April.
    4. Jan Opfer & Kay-Eberhard Gottschalk, 2012. "Identifying Discrete States of a Biological System Using a Novel Step Detection Algorithm," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-10, November.
    5. Ehsan Akbari & Melika Shahhosseini & Ariel Robbins & Michael G. Poirier & Jonathan W. Song & Carlos E. Castro, 2022. "Low cost and massively parallel force spectroscopy with fluid loading on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:438:y:2005:i:7067:d:10.1038_nature04268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.