Author
Listed:
- Ayala Matzner
- Izhar Bar-Gad
Abstract
Estimation of the power spectrum is a common method for identifying oscillatory changes in neuronal activity. However, the stochastic nature of neuronal activity leads to severe biases in the estimation of these oscillations in single unit spike trains. Different biological and experimental factors cause the spike train to differentially reflect its underlying oscillatory rate function. We analyzed the effect of factors, such as the mean firing rate and the recording duration, on the detectability of oscillations and their significance, and tested these theoretical results on experimental data recorded in Parkinsonian non-human primates. The effect of these factors is dramatic, such that in some conditions, the detection of existing oscillations is impossible. Moreover, these biases impede the comparison of oscillations across brain regions, neuronal types, behavioral states and separate recordings with different underlying parameters, and lead inevitably to a gross misinterpretation of experimental results. We introduce a novel objective measure, the "modulation index", which overcomes these biases, and enables reliable detection of oscillations from spike trains and a direct estimation of the oscillation magnitude. The modulation index detects a high percentage of oscillations over a wide range of parameters, compared to classical spectral analysis methods, and enables an unbiased comparison between spike trains recorded from different neurons and using different experimental protocols.Author Summary: Neuronal oscillations play a key role in normal behavior and during multiple pathological conditions. In this manuscript, we expose major biases and distortions which arise from the quantification of neuronal spike train oscillations. These, previously neglected, biases hinder the comparison of oscillations across brain regions, neuronal types and behavioral states, leading inevitably to severe misinterpretation of experimental results. We demonstrate the biases computationally, formulate them analytically and validate their appearance and magnitude in an experimental dataset recorded from Parkinsonian non-human primates. Next, following a formulation of the distortions, we introduce a novel objective measure, the "modulation index", which overcomes these biases, and enables a reliable detection of oscillations from spike trains and a direct estimation of the oscillation magnitude. The modulation index is validated on the same experimental data demonstrating the unbiased detection of beta oscillation in the globus pallidus during Parkinsonism. The manuscript provides a solid infrastructure for oscillation analysis which benefits multiple neuroscience fields ranging from basic science to clinical studies, moreover its results may be expanded to encompass additional fields in biology which require the spectral analysis of point process data.
Suggested Citation
Ayala Matzner & Izhar Bar-Gad, 2015.
"Quantifying Spike Train Oscillations: Biases, Distortions and Solutions,"
PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-21, April.
Handle:
RePEc:plo:pcbi00:1004252
DOI: 10.1371/journal.pcbi.1004252
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Simone Orcioni & Alessandra Paffi & Francesca Apollonio & Micaela Liberti, 2020.
"Revealing Spectrum Features of Stochastic Neuron Spike Trains,"
Mathematics, MDPI, vol. 8(6), pages 1-13, June.
- Kensuke Arai & Robert E Kass, 2017.
"Inferring oscillatory modulation in neural spike trains,"
PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004252. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.