IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003931.html
   My bibliography  Save this article

Pattern of Tick Aggregation on Mice: Larger Than Expected Distribution Tail Enhances the Spread of Tick-Borne Pathogens

Author

Listed:
  • Luca Ferreri
  • Mario Giacobini
  • Paolo Bajardi
  • Luigi Bertolotti
  • Luca Bolzoni
  • Valentina Tagliapietra
  • Annapaola Rizzoli
  • Roberto Rosà

Abstract

The spread of tick-borne pathogens represents an important threat to human and animal health in many parts of Eurasia. Here, we analysed a 9-year time series of Ixodes ricinus ticks feeding on Apodemus flavicollis mice (main reservoir-competent host for tick-borne encephalitis, TBE) sampled in Trentino (Northern Italy). The tail of the distribution of the number of ticks per host was fitted by three theoretical distributions: Negative Binomial (NB), Poisson-LogNormal (PoiLN), and Power-Law (PL). The fit with theoretical distributions indicated that the tail of the tick infestation pattern on mice is better described by the PL distribution. Moreover, we found that the tail of the distribution significantly changes with seasonal variations in host abundance. In order to investigate the effect of different tails of tick distribution on the invasion of a non-systemically transmitted pathogen, we simulated the transmission of a TBE-like virus between susceptible and infective ticks using a stochastic model. Model simulations indicated different outcomes of disease spreading when considering different distribution laws of ticks among hosts. Specifically, we found that the epidemic threshold and the prevalence equilibria obtained in epidemiological simulations with PL distribution are a good approximation of those observed in simulations feed by the empirical distribution. Moreover, we also found that the epidemic threshold for disease invasion was lower when considering the seasonal variation of tick aggregation.Author Summary: Our work analyses a 9-year time series of tick co-feeding patterns on Yellow-necked mice. Our data shows a strong heterogeneity, where most mice are parasitised by a small number of ticks while few host a much larger number. We describe the number of ticks per host by the commonly used Negative Binomial model, by the Poisson-LogNormal model, and we propose the Power Law model as an alternative. In our data, the last model seems to better describe the strong heterogeneity. In order to understand the epidemiological consequences, we use a computational model to reproduce a peculiar way of transmission, observed in some cases in nature, where uninfected ticks acquire an infection by feeding on a host where infected ticks are present, without any remarkable epidemiological involvement of the host itself. In particular, we are interested in determining the conditions leading to pathogen spread. We observe that the effective transmission of this infection in nature is highly dependent on the capability of the implemented model to describe the tick burden. In addition, we also consider seasonal changes in tick aggregation on mice, showing its influence on the spread of the infection.

Suggested Citation

  • Luca Ferreri & Mario Giacobini & Paolo Bajardi & Luigi Bertolotti & Luca Bolzoni & Valentina Tagliapietra & Annapaola Rizzoli & Roberto Rosà, 2014. "Pattern of Tick Aggregation on Mice: Larger Than Expected Distribution Tail Enhances the Spread of Tick-Borne Pathogens," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-12, November.
  • Handle: RePEc:plo:pcbi00:1003931
    DOI: 10.1371/journal.pcbi.1003931
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003931
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003931&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003931?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maliyoni, Milliward & Chirove, Faraimunashe & Gaff, Holly D. & Govinder, Keshlan S., 2019. "A stochastic epidemic model for the dynamics of two pathogens in a single tick population," Theoretical Population Biology, Elsevier, vol. 127(C), pages 75-90.
    2. Johnstone-Robertson, Simon P. & Diuk-Wasser, Maria A. & Davis, Stephen A., 2020. "Incorporating tick feeding behaviour into R0 for tick-borne pathogens," Theoretical Population Biology, Elsevier, vol. 131(C), pages 25-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrice Gilles & Sabina Issehnane & Florent Sari, 2022. "Using short-term jobs as a way to find a regular job. What kind of role for local context?," TEPP Working Paper 2022-07, TEPP.
    2. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    3. Cornelia Lawson, 2013. "Academic Inventions Outside the University: Investigating Patent Ownership in the UK," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.
    4. Vipin Arora & Shuping Shi, 2016. "Nonlinearities and tests of asset price bubbles," Empirical Economics, Springer, vol. 50(4), pages 1421-1433, June.
    5. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    6. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    7. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    8. Das, Marcel & van Soest, Arthur, 1999. "A panel data model for subjective information on household income growth," Journal of Economic Behavior & Organization, Elsevier, vol. 40(4), pages 409-426, December.
    9. Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
    10. Luis Garicano & Thomas N. Hubbard, 2016. "The Returns to Knowledge Hierarchies," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 32(4), pages 653-684.
    11. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019. "The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
    13. Bel, K. & Paap, R., 2013. "Modeling the impact of forecast-based regime switches on macroeconomic time series," Econometric Institute Research Papers EI 2013-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2020. "The information content of funds from operations and net income in real estate investment trusts," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    15. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    16. Filiz-Ozbay, Emel & Guryan, Jonathan & Hyndman, Kyle & Kearney, Melissa & Ozbay, Erkut Y., 2015. "Do lottery payments induce savings behavior? Evidence from the lab," Journal of Public Economics, Elsevier, vol. 126(C), pages 1-24.
    17. Arthur Caplan & John Gilbert, 2010. "Can fighting grade inflation help the bottom line?," Applied Economics Letters, Taylor & Francis Journals, vol. 17(17), pages 1663-1667.
    18. Mozhaeva, Irina, 2022. "Inequalities in utilization of institutional care among older people in Estonia," Health Policy, Elsevier, vol. 126(7), pages 704-714.
    19. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.
    20. repec:lan:wpaper:2935 is not listed on IDEAS
    21. Ronelle Burger & Canh Thien Dang & Trudy Owens, 2017. "Better performing NGOs do report more accurately: Evidence from investigating Ugandan NGO financial accounts," Discussion Papers 2017-10, University of Nottingham, CREDIT.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.