IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003818.html
   My bibliography  Save this article

The Time Scale of Evolutionary Innovation

Author

Listed:
  • Krishnendu Chatterjee
  • Andreas Pavlogiannis
  • Ben Adlam
  • Martin A Nowak

Abstract

A fundamental question in biology is the following: what is the time scale that is needed for evolutionary innovations? There are many results that characterize single steps in terms of the fixation time of new mutants arising in populations of certain size and structure. But here we ask a different question, which is concerned with the much longer time scale of evolutionary trajectories: how long does it take for a population exploring a fitness landscape to find target sequences that encode new biological functions? Our key variable is the length, of the genetic sequence that undergoes adaptation. In computer science there is a crucial distinction between problems that require algorithms which take polynomial or exponential time. The latter are considered to be intractable. Here we develop a theoretical approach that allows us to estimate the time of evolution as function of We show that adaptation on many fitness landscapes takes time that is exponential in even if there are broad selection gradients and many targets uniformly distributed in sequence space. These negative results lead us to search for specific mechanisms that allow evolution to work on polynomial time scales. We study a regeneration process and show that it enables evolution to work in polynomial time.Author Summary: Evolutionary adaptation can be described as a biased, stochastic walk of a population of sequences in a high dimensional sequence space. The population explores a fitness landscape. The mutation-selection process biases the population towards regions of higher fitness. In this paper we estimate the time scale that is needed for evolutionary innovation. Our key parameter is the length of the genetic sequence that needs to be adapted. We show that a variety of evolutionary processes take exponential time in sequence length. We propose a specific process, which we call ‘regeneration processes’, and show that it allows evolution to work on polynomial time scales. In this view, evolution can solve a problem efficiently if it has solved a similar problem already.

Suggested Citation

  • Krishnendu Chatterjee & Andreas Pavlogiannis & Ben Adlam & Martin A Nowak, 2014. "The Time Scale of Evolutionary Innovation," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-7, September.
  • Handle: RePEc:plo:pcbi00:1003818
    DOI: 10.1371/journal.pcbi.1003818
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003818
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003818&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Walter Fontana & Peter Schuster, 1998. "Continuity in Evolution: On the Nature of Transition," Working Papers 98-04-030, Santa Fe Institute.
    2. Inna S. Povolotskaya & Fyodor A. Kondrashov, 2010. "Sequence space and the ongoing expansion of the protein universe," Nature, Nature, vol. 465(7300), pages 922-926, June.
    3. W. Fontana & P. Schuster, 1998. "Continuity in Evolution: On the Nature of Transitions," Working Papers ir98039, International Institute for Applied Systems Analysis.
    4. Frank J. Poelwijk & Daniel J. Kiviet & Daniel M. Weinreich & Sander J. Tans, 2007. "Empirical fitness landscapes reveal accessible evolutionary paths," Nature, Nature, vol. 445(7126), pages 383-386, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cirne, Diego & Campos, Paulo R.A., 2022. "A study about the evolutionary dynamics and repeatability in time-varying fitness landscapes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger D Kouyos & Gabriel E Leventhal & Trevor Hinkley & Mojgan Haddad & Jeannette M Whitcomb & Christos J Petropoulos & Sebastian Bonhoeffer, 2012. "Exploring the Complexity of the HIV-1 Fitness Landscape," PLOS Genetics, Public Library of Science, vol. 8(3), pages 1-9, March.
    2. James P. Crutchfield & Erik van Nimwegen, 1999. "The Evolutionary Unfolding of Complexity," Working Papers 99-02-015, Santa Fe Institute.
    3. Jan Cupal & Stephan Kopp & Peter F. Stadler, 1999. "RNA Space Shape Technology," Working Papers 99-03-022, Santa Fe Institute.
    4. Miguel A Fortuna & Luis Zaman & Charles Ofria & Andreas Wagner, 2017. "The genotype-phenotype map of an evolving digital organism," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.
    5. Tobias Sikosek & Erich Bornberg-Bauer & Hue Sun Chan, 2012. "Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-17, September.
    6. Evandro Ferrada, 2014. "The Amino Acid Alphabet and the Architecture of the Protein Sequence-Structure Map. I. Binary Alphabets," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-20, December.
    7. Bårbel M. R. Stadler & Peter F. Stadler & Peter R. Wills, 2001. "Evolution in Systems of Ligation-Based Replicators," Working Papers 01-09-052, Santa Fe Institute.
    8. Rendel, Mark D., 2011. "Adaptive evolutionary walks require neutral intermediates in RNA fitness landscapes," Theoretical Population Biology, Elsevier, vol. 79(1), pages 12-18.
    9. Campos, Paulo R.A & Adami, Christoph & Wilke, Claus O, 2002. "Optimal adaptive performance and delocalization in NK fitness landscapes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 304(3), pages 495-506.
    10. Christian M. Reidys & Peter F. Stadler, 1998. "Neutrality in Fitness Landscapes," Working Papers 98-10-089, Santa Fe Institute.
    11. Manhart, Michael & Haldane, Allan & Morozov, Alexandre V., 2012. "A universal scaling law determines time reversibility and steady state of substitutions under selection," Theoretical Population Biology, Elsevier, vol. 82(1), pages 66-76.
    12. Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.
    13. Beerenwinkel Niko & Knupfer Patrick & Tresch Achim, 2011. "Learning Monotonic Genotype-Phenotype Maps," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, January.
    14. BŠrbel M. R. Stadler & Peter F. Stadler & Max Shpak & GŸnter P. Wagner, 2001. "Recombination Spaces, Metrics, and Pretopologies," Working Papers 01-02-011, Santa Fe Institute.
    15. Gilpin, William & Feldman, Marcus W., 2019. "Cryptic selection forces and dynamic heritability in generalized phenotypic evolution," Theoretical Population Biology, Elsevier, vol. 125(C), pages 20-29.
    16. Jia Zheng & Ning Guo & Yuxiang Huang & Xiang Guo & Andreas Wagner, 2024. "High temperature delays and low temperature accelerates evolution of a new protein phenotype," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.