Author
Listed:
- Anca Doloc-Mihu
- Ronald L Calabrese
Abstract
Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons) allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO) model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron) and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency) similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA) to each of these four groups. PCA identified a set of three maximal conductances (leak current, Leak; a persistent K current, K2; and of a persistent Na+ current, P) that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of Leak, K2, and P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained.Author Summary: Central pattern-generating networks (CPGs) must be remarkably robust, maintaining functional rhythmic activity despite fluctuations in internal and external conditions. Recent experimental evidence suggests that this robustness is achieved by the coordinated regulation of many membrane and synaptic current parameters. Experimental and computational studies showed that linearly correlated sets of such parameters allow CPG neurons to produce and maintain their rhythmic activity. However, the mechanisms that allow multiple parameters to interact, thereby producing and maintaining rhythmic single cell and network activity, are not clear. Here, we use a half-center oscillator (HCO) model that replicates the electrical activity (rhythmic alternating bursting of mutually inhibitory interneurons) of the leech heartbeat CPG to investigate potential relationships between parameters that maintain functional bursting activity in the HCOs and the isolated component neurons (bursters). We found a linearly correlated set of three maximal conductances that maintains functional bursting activity similar to the animal in burster model instances, therefore increasing robustness of bursting activity. In addition, we found that bursting activity was very sensitive to individual variation of these parameters; only correlated changes could maintain the activity type.
Suggested Citation
Anca Doloc-Mihu & Ronald L Calabrese, 2014.
"Identifying Crucial Parameter Correlations Maintaining Bursting Activity,"
PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
Handle:
RePEc:plo:pcbi00:1003678
DOI: 10.1371/journal.pcbi.1003678
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003678. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.