IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003503.html
   My bibliography  Save this article

Modeling Mutual Exclusivity of Cancer Mutations

Author

Listed:
  • Ewa Szczurek
  • Niko Beerenwinkel

Abstract

In large collections of tumor samples, it has been observed that sets of genes that are commonly involved in the same cancer pathways tend not to occur mutated together in the same patient. Such gene sets form mutually exclusive patterns of gene alterations in cancer genomic data. Computational approaches that detect mutually exclusive gene sets, rank and test candidate alteration patterns by rewarding the number of samples the pattern covers and by punishing its impurity, i.e., additional alterations that violate strict mutual exclusivity. However, the extant approaches do not account for possible observation errors. In practice, false negatives and especially false positives can severely bias evaluation and ranking of alteration patterns. To address these limitations, we develop a fully probabilistic, generative model of mutual exclusivity, explicitly taking coverage, impurity, as well as error rates into account, and devise efficient algorithms for parameter estimation and pattern ranking. Based on this model, we derive a statistical test of mutual exclusivity by comparing its likelihood to the null model that assumes independent gene alterations. Using extensive simulations, the new test is shown to be more powerful than a permutation test applied previously. When applied to detect mutual exclusivity patterns in glioblastoma and in pan-cancer data from twelve tumor types, we identify several significant patterns that are biologically relevant, most of which would not be detected by previous approaches. Our statistical modeling framework of mutual exclusivity provides increased flexibility and power to detect cancer pathways from genomic alteration data in the presence of noise. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2–5.Author Summary: Tumor DNA carries multiple alterations, including somatic point mutations, amplifications, and deletions. It is challenging to identify the disease-causing alterations from the plethora of random ones, and to delineate their functional relations and involvement in common pathways. One solution for this task is inspired by the observation that genes from the same cancer pathway tend not to be altered together in each patient, and thus form patterns of mutually exclusive alterations across patients. Mutual exclusivity may arise, because alteration of only one pathway component is sufficient to deregulate the entire process. Detecting such patterns is an important step in de novo identification of cancerous pathways and potential treatment targets. However, the task is complicated by errors in the data, due to measurement noise, false mutation calls and their misinterpretation. Here, we propose a fully probabilistic, generative model of mutually exclusive patterns accounting for observation errors, with interpretable parameters that allow proper evaluation of patterns, free of error bias. Within our statistical framework, we develop efficient algorithms for parameter estimation and pattern ranking, together with a statistical test for mutual exclusivity, providing more flexibility and power than procedures applied previously.

Suggested Citation

  • Ewa Szczurek & Niko Beerenwinkel, 2014. "Modeling Mutual Exclusivity of Cancer Mutations," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-12, March.
  • Handle: RePEc:plo:pcbi00:1003503
    DOI: 10.1371/journal.pcbi.1003503
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003503
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003503&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumana Srivatsa & Hesam Montazeri & Gaia Bianco & Mairene Coto-Llerena & Mattia Marinucci & Charlotte K. Y. Ng & Salvatore Piscuoglio & Niko Beerenwinkel, 2022. "Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrice Gilles & Sabina Issehnane & Florent Sari, 2022. "Using short-term jobs as a way to find a regular job. What kind of role for local context?," TEPP Working Paper 2022-07, TEPP.
    2. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    3. Cornelia Lawson, 2013. "Academic Inventions Outside the University: Investigating Patent Ownership in the UK," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.
    4. Vipin Arora & Shuping Shi, 2016. "Nonlinearities and tests of asset price bubbles," Empirical Economics, Springer, vol. 50(4), pages 1421-1433, June.
    5. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    6. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    7. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    8. Das, Marcel & van Soest, Arthur, 1999. "A panel data model for subjective information on household income growth," Journal of Economic Behavior & Organization, Elsevier, vol. 40(4), pages 409-426, December.
    9. Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
    10. Luis Garicano & Thomas N. Hubbard, 2016. "The Returns to Knowledge Hierarchies," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 32(4), pages 653-684.
    11. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019. "The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
    13. Bel, K. & Paap, R., 2013. "Modeling the impact of forecast-based regime switches on macroeconomic time series," Econometric Institute Research Papers EI 2013-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2020. "The information content of funds from operations and net income in real estate investment trusts," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    15. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    16. Filiz-Ozbay, Emel & Guryan, Jonathan & Hyndman, Kyle & Kearney, Melissa & Ozbay, Erkut Y., 2015. "Do lottery payments induce savings behavior? Evidence from the lab," Journal of Public Economics, Elsevier, vol. 126(C), pages 1-24.
    17. Arthur Caplan & John Gilbert, 2010. "Can fighting grade inflation help the bottom line?," Applied Economics Letters, Taylor & Francis Journals, vol. 17(17), pages 1663-1667.
    18. Mozhaeva, Irina, 2022. "Inequalities in utilization of institutional care among older people in Estonia," Health Policy, Elsevier, vol. 126(7), pages 704-714.
    19. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.
    20. repec:lan:wpaper:2935 is not listed on IDEAS
    21. Ronelle Burger & Canh Thien Dang & Trudy Owens, 2017. "Better performing NGOs do report more accurately: Evidence from investigating Ugandan NGO financial accounts," Discussion Papers 2017-10, University of Nottingham, CREDIT.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.