Interference and Shaping in Sensorimotor Adaptations with Rewards
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1003377
Download full text from publisher
References listed on IDEAS
- Tomaso Poggio & Emilio Bizzi, 2004. "Generalization in vision and motor control," Nature, Nature, vol. 431(7010), pages 768-774, October.
- Brie A. Linkenhoker & Eric I. Knudsen, 2002. "Incremental training increases the plasticity of the auditory space map in adult barn owls," Nature, Nature, vol. 419(6904), pages 293-296, September.
- John N. J. Reynolds & Brian I. Hyland & Jeffery R. Wickens, 2001. "A cellular mechanism of reward-related learning," Nature, Nature, vol. 413(6851), pages 67-70, September.
- Evren C. Tumer & Michael S. Brainard, 2007. "Performance variability enables adaptive plasticity of ‘crystallized’ adult birdsong," Nature, Nature, vol. 450(7173), pages 1240-1244, December.
- Jun Izawa & Reza Shadmehr, 2011. "Learning from Sensory and Reward Prediction Errors during Motor Adaptation," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-11, March.
- Kurt A. Thoroughman & Reza Shadmehr, 2000. "Learning of action through adaptive combination of motor primitives," Nature, Nature, vol. 407(6805), pages 742-747, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Takuya Honda & Masaya Hirashima & Daichi Nozaki, 2012. "Adaptation to Visual Feedback Delay Influences Visuomotor Learning," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
- Yael Mandelblat-Cerf & Itai Novick & Eilon Vaadia, 2011. "Expressions of Multiple Neuronal Dynamics during Sensorimotor Learning in the Motor Cortex of Behaving Monkeys," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-14, July.
- Harry Manley & Peter Dayan & Jörn Diedrichsen, 2014. "When Money Is Not Enough: Awareness, Success, and Variability in Motor Learning," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
- Barbara Feulner & Matthew G. Perich & Lee E. Miller & Claudia Clopath & Juan A. Gallego, 2025. "A neural implementation model of feedback-based motor learning," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
- Taisei Sugiyama & Nicolas Schweighofer & Jun Izawa, 2023. "Reinforcement learning establishes a minimal metacognitive process to monitor and control motor learning performance," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
- Hugo L Fernandes & Ian H Stevenson & Konrad P Kording, 2012. "Generalization of Stochastic Visuomotor Rotations," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-9, August.
- Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
- Ayaka Kato & Kenji Morita, 2016. "Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-41, October.
- John N. J. Reynolds & Riccardo Avvisati & Paul D. Dodson & Simon D. Fisher & Manfred J. Oswald & Jeffery R. Wickens & Yan-Feng Zhang, 2022. "Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Sravani Kondapavulur & Stefan M. Lemke & David Darevsky & Ling Guo & Preeya Khanna & Karunesh Ganguly, 2022. "Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Fabian Heim & Ezequiel Mendoza & Avani Koparkar & Daniela Vallentin, 2024. "Disinhibition enables vocal repertoire expansion after a critical period," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Maurice A Smith & Ali Ghazizadeh & Reza Shadmehr, 2006. "Interacting Adaptive Processes with Different Timescales Underlie Short-Term Motor Learning," PLOS Biology, Public Library of Science, vol. 4(6), pages 1-1, May.
- Takashi Nakano & Makoto Otsuka & Junichiro Yoshimoto & Kenji Doya, 2015. "A Spiking Neural Network Model of Model-Free Reinforcement Learning with High-Dimensional Sensory Input and Perceptual Ambiguity," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-18, March.
- Barbara Feulner & Matthew G. Perich & Raeed H. Chowdhury & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2022. "Small, correlated changes in synaptic connectivity may facilitate rapid motor learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Simon P Orozco & Scott T Albert & Reza Shadmehr, 2021. "Adaptive control of movement deceleration during saccades," PLOS Computational Biology, Public Library of Science, vol. 17(7), pages 1-30, July.
- Takuto Kawaji & Mizuki Fujibayashi & Kentaro Abe, 2024. "Goal-directed and flexible modulation of syllable sequence within birdsong," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Joshua G A Cashaback & Heather R McGregor & Ayman Mohatarem & Paul L Gribble, 2017. "Dissociating error-based and reinforcement-based loss functions during sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-28, July.
- Jun Izawa & Reza Shadmehr, 2011. "Learning from Sensory and Reward Prediction Errors during Motor Adaptation," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-11, March.
- Frédéric Crevecoeur & Stephen H Scott, 2013. "Priors Engaged in Long-Latency Responses to Mechanical Perturbations Suggest a Rapid Update in State Estimation," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-14, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003377. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.